1,349 research outputs found

    A Chandra study of X-ray sources in the field of the z=2.16 radio galaxy MRC 1138-262

    Get PDF
    We present results from a Chandra X-ray Observatory study of the field X-ray source population in the vicinity of the radio galaxy MRC 1138-262. Many serendipitous X-ray sources are detected in an area of 8'x8' around the radio source and 90% are identified in our deep VLT images. The space density of such sources is higher than expected on the basis of the statistics of ROSAT and Chandra deep surveys. The most likely explanation is in terms of a concentration of AGN associated with the protocluster at z=2.16 which was found around the radio galaxy in previous studies. Two sources have a confirmed spectroscopic redshift close to that of the radio galaxy, and for three more sources other observations suggest that they are associated with the protocluster. Four of these five X-ray sources form, together with the radio galaxy, a filament in the plane of the sky. The direction of the filament is similar to that of the radio source axis, the large scale distribution of the other protocluster members, the 150 kpc-sized emission-line halo and the extended X-ray emission associated with the radio galaxy. The majority of optically identified X-ray sources in this field have properties consistent with type I AGN, a few could be soft, low luminosity galaxies, one is probably an obscured (type II) AGN and one is a star. These statistics are consistent with the results of deep X-ray surveys.Comment: 8 pages, 2 figures, to appear in Astronomy and Astrophysic

    The host galaxy of the z=2.4 radio-loud AGN MRC 0406-244 as seen by HST

    Full text link
    We present multicolour Hubble Space Telescope images of the powerful z=2.4 radio galaxy MRC 0406-244 and model its complex morphology with several components including a host galaxy, a point source, and extended nebular and continuum emission. We suggest that the main progenitor of this radio galaxy was a normal, albeit massive (M ~10^{11} solar masses), star-forming galaxy. The optical stellar disc of the host galaxy is smooth and well described by a S\'ersic profile, which argues against a recent major merger, however there is also a point-source component which may be the remnant of a minor merger. The half-light radius of the optical disc is constrained to lie in the range 3.5 to 8.2kpc, which is of similar size to coeval star forming galaxies. Biconical shells of nebular emission and UV-bright continuum extend out from the host galaxy along the radio jet axis, which is also the minor axis of the host galaxy. The origin of the continuum emission is uncertain, but it is most likely to be young stars or dust-scattered light from the AGN, and it is possible that stars are forming from this material at a rate of 200^{+1420}_{-110} solar masses per year.Comment: Accepted for publication in MNRA

    The MURALES survey II. Presentation of MUSE observations of 20 3C low-z radio galaxies and first results

    Get PDF
    We present observations of a complete sub-sample of 20 radio galaxies from the Third Cambridge Catalog (3C) with redshift <0.3 obtained from VLT/MUSE optical integral field spectrograph. These data have been obtained as part of the survey MURALES (a MUse RAdio Loud Emission line Snapshot survey) with the main goal of exploring the Active Galactic Nuclei (AGN) feedback process in a sizeable sample of the most powerful radio sources at low redshift. We present the data analysis and, for each source, the resulting emission line images and the 2D gas velocity field. Thanks to their unprecedented depth (the median 3 sigma surface brightness limit in the emission line maps is 6X10^-18 erg s-1 cm-2 arcsec-2, these observations reveal emission line structures extending to several tens of kiloparsec in most objects. In nine sources the gas velocity shows ordered rotation, but in the other cases it is highly complex. 3C sources show a connection between radio morphology and emission line properties. Whereas, in three of the four Fanaroff and Riley Class I radio galaxies (FRIs), the line emission regions are compact, ~1 kpc in size; in all but one of the Class II radiogalaxies FRIIs, we detected large scale structures of ionized gas with a median extent of 17 kpc. Among the FRIIs, those of high and low excitation show extended gas structures with similar morphological properties, suggesting that they both inhabit regions characterized by a rich gaseous environment on kpc scale.Comment: Accepted for publication in A&

    ISO observations of a sample of Compact Steep Spectrum and GHz Peaked Spectrum Radio Galaxies

    Get PDF
    We present results from observations obtained with ISOPHOT, on board the ISO satellite, of a representative sample of seventeen CSS/GPS radio galaxies and of a control sample of sixteen extended radio galaxies spanning similar ranges in redshift (0.2 = 10^26 W/Hz). The observations have been performed at lambda = 60, 90, 174 and 200 microns. Seven of the CSS/GPS sources have detections >= 3 sigma at one or more wavelengths, one of which is detected at >= 5 sigma. By co-adding the data we have obtained average flux densities at the four wavelengths. We found no evidence that the FIR luminosities of the CSS/GPS sources are significantly different from those of the extended objects and therefore there is not any support for CSS/GPS sources being objects "frustrated" by an abnormally dense ambient medium. The two samples were then combined, providing FIR information on a new sample of radio galaxies at intermediate redshifts. We compare this information with what previously known from IRAS and discuss the average properties of radio galaxies in the redshift range 0.2 - 0.8. The FIR emission cannot be accounted for by extrapolation of the synchrotron radio spectrum and we attribute it to thermal dust emission. The average FIR luminosity is >= 6*10^11 L_sun. Over the observed frequency range the infrared spectrum can be described by a power law with spectral index alpha >~1.0 +/- 0.2. Assuming the emission to be due to dust, a range of temperatures is required, from >=80 K to \~25 K. The dust masses required to explain the FIR emission range from 5*10^5 M_sun for the hotter component up to 2*10^8 M_sun for the colder one. (abridged)Comment: Astronomy & Astrophysics, in press, 16 pages, 2 Figure

    The puzzling case of the radio-loud QSO 3C 186: a gravitational wave recoiling black hole in a young radio source?

    Get PDF
    Context. Radio-loud AGNs with powerful relativistic jets are thought to be associated with rapidly spinning black holes (BHs). BH spin-up may result from a number of processes, including accretion of matter onto the BH itself, and catastrophic events such as BH-BH mergers. Aims. We study the intriguing properties of the powerful (L_bol ~ 10^47 erg s^-1) radio-loud quasar 3C 186. This object shows peculiar features both in the images and in the spectra. Methods. We utilize near-IR Hubble Space Telescope (HST) images to study the properties of the host galaxy, and HST UV and Sloan Digital Sky Survey optical spectra to study the kinematics of the source. Chandra X-ray data are also used to better constrain the physical interpretation. Results. HST imaging shows that the active nucleus is offset by 1.3 +- 0.1 arcsec (i.e. ~11 kpc) with respect to the center of the host galaxy. Spectroscopic data show that the broad emission lines are offset by -2140 +-390 km/s with respect to the narrow lines. Velocity shifts are often seen in QSO spectra, in particular in high-ionization broad emission lines. The host galaxy of the quasar displays a distorted morphology with possible tidal features that are typical of the late stages of a galaxy merger. Conclusions. A number of scenarios can be envisaged to account for the observed features. While the presence of a peculiar outflow cannot be completely ruled out, all of the observed features are consistent with those expected if the QSO is associated with a gravitational wave (GW) recoiling BH. Future detailed studies of this object will allow us to confirm this type of scenario and will enable a better understanding of both the physics of BH-BH mergers and the phenomena associated with the emission of GW from astrophysical sources.Comment: 16 pages, 8 figures. Accepted for publication in Astronomy & Astrophysics. New appendix adde

    The MURALES survey. I. A dual AGN in the radio galaxy 3C459?

    Get PDF
    We observed the FRII radio galaxy 3C459 (z=0.22) with the MUSE spectrograph at the Very Large Telescope (VLT) as part of the MURALES project (a MUse RAdio Loud Emission line Snapshot survey). We detected diffuse nuclear emission and a filamentary ionized gas structure forming a one-sided, triangular-shaped region extending out to \sim80 kpc. The central emission line region is dominated by two compact knots of similar flux: the first (N1) cospatial with the radio core and the (N2) second located 1.2" (5.3 kpc) to the SE. The two regions differ dramatically from the point of view of velocity (with an offset of ~400 km/s), line widths, and line ratios. This suggests that we are observing a dual AGN system formed by a radio loud AGN and type 2 QSO companion, which is the result of the recent merger that also produced its disturbed host morphology. The alternative possibility that N2 is just a bright emission line knot resulting from, for example, a jet-cloud interaction, is disfavored because of 1) the presence of a high ionization bicone whose apex is located at N2; 2) the observed narrow line widths; 3) its line luminosity (~10^42 erg s-1) typical of luminous QSOs; and 4) its location, which is offset from the jet path. The putative secondary AGN must be highly obscured, since we do not detect any emission in the Chandra and infrared Hubble Space Telescope images.Comment: 6 pages, 6 figures, A&A in pres
    corecore