27,319 research outputs found

    Pricing of drugs and donations: options for sustainable equity pricing.

    Get PDF
    Effective medicines exist to treat or alleviate many diseases which predominate in the developing world and cause high mortality and morbidity rates. Price should not be an obstacle preventing access to these medicines. Increasingly, drug donations have been established by drug companies, but these are often limited in time, place or use. Measures exist which are more sustainable and will have a greater positive impact on people's health. Principally, these are encouraging generic competition; adopting into national legislation and implementing TRIPS safeguards to gain access to cheaper sources of drugs; differential pricing; creating high volume or high demand through global and regional procurement; and supporting the production of quality generic drugs by developing countries through voluntary licenses if needed, and facilitating technology transfer

    Gene expression patterns following unilateral traumatic brain injury reveals a local pro-inflammatory and remote anti-inflammatory response.

    Get PDF
    BackgroundTraumatic brain injury (TBI) results in irreversible damage at the site of impact and initiates cellular and molecular processes that lead to secondary neural injury in the surrounding tissue. We used microarray analysis to determine which genes, pathways and networks were significantly altered using a rat model of TBI. Adult rats received a unilateral controlled cortical impact (CCI) and were sacrificed 24 h post-injury. The ipsilateral hemi-brain tissue at the site of the injury, the corresponding contralateral hemi-brain tissue, and naïve (control) brain tissue were used for microarray analysis. Ingenuity Pathway Analysis (IPA) software was used to identify molecular pathways and networks that were associated with the altered gene expression in brain tissues following TBI.ResultsInspection of the top fifteen biological functions in IPA associated with TBI in the ipsilateral tissues revealed that all had an inflammatory component. IPA analysis also indicated that inflammatory genes were altered on the contralateral side, but many of the genes were inversely expressed compared to the ipsilateral side. The contralateral gene expression pattern suggests a remote anti-inflammatory molecular response. We created a network of the inversely expressed common (i.e., same gene changed on both sides of the brain) inflammatory response (IR) genes and those IR genes included in pathways and networks identified by IPA that changed on only one side. We ranked the genes by the number of direct connections each had in the network, creating a gene interaction hierarchy (GIH). Two well characterized signaling pathways, toll-like receptor/NF-kappaB signaling and JAK/STAT signaling, were prominent in our GIH.ConclusionsBioinformatic analysis of microarray data following TBI identified key molecular pathways and networks associated with neural injury following TBI. The GIH created here provides a starting point for investigating therapeutic targets in a ranked order that is somewhat different than what has been presented previously. In addition to being a vehicle for identifying potential targets for post-TBI therapeutic strategies, our findings can also provide a context for evaluating the potential of therapeutic agents currently in development

    Quantum Inequalities on the Energy Density in Static Robertson-Walker Spacetimes

    Get PDF
    Quantum inequality restrictions on the stress-energy tensor for negative energy are developed for three and four-dimensional static spacetimes. We derive a general inequality in terms of a sum of mode functions which constrains the magnitude and duration of negative energy seen by an observer at rest in a static spacetime. This inequality is evaluated explicitly for a minimally coupled scalar field in three and four-dimensional static Robertson-Walker universes. In the limit of vanishing curvature, the flat spacetime inequalities are recovered. More generally, these inequalities contain the effects of spacetime curvature. In the limit of short sampling times, they take the flat space form plus subdominant curvature-dependent corrections.Comment: 18 pages, plain LATEX, with 3 figures, uses eps

    Progress in electrochemical storage for battery systems

    Get PDF
    Efforts to improve electrochemical systems for space use relate to: (1) improvement of conventional systems; (2) development of fuel cells to practical power systems; and (3) a search for new systems that provide gains in energy density but offer comparable life and performance as conventional systems. Improvements in sealed conventional systems resulted in the areas of materials, charge control methods, cell operations and battery control, and specific process controls required during cell manufacture. Fuel-cell systems have been developed for spacecraft but the use of these power plants is limited. For present and planned flights, nickel-cadmium, silver-zinc, and silver-cadmium systems will be used. Improvements in nickel-cadmium batteries have been applied in medical and commercial areas

    Stochastic Spacetime and Brownian Motion of Test Particles

    Full text link
    The operational meaning of spacetime fluctuations is discussed. Classical spacetime geometry can be viewed as encoding the relations between the motions of test particles in the geometry. By analogy, quantum fluctuations of spacetime geometry can be interpreted in terms of the fluctuations of these motions. Thus one can give meaning to spacetime fluctuations in terms of observables which describe the Brownian motion of test particles. We will first discuss some electromagnetic analogies, where quantum fluctuations of the electromagnetic field induce Brownian motion of test particles. We next discuss several explicit examples of Brownian motion caused by a fluctuating gravitational field. These examples include lightcone fluctuations, variations in the flight times of photons through the fluctuating geometry, and fluctuations in the expansion parameter given by a Langevin version of the Raychaudhuri equation. The fluctuations in this parameter lead to variations in the luminosity of sources. Other phenomena which can be linked to spacetime fluctuations are spectral line broadening and angular blurring of distant sources.Comment: 15 pages, 3 figures. Talk given at the 9th Peyresq workshop, June 200

    Bounds on negative energy densities in flat spacetime

    Get PDF
    We generalise results of Ford and Roman which place lower bounds -- known as quantum inequalities -- on the renormalised energy density of a quantum field averaged against a choice of sampling function. Ford and Roman derived their results for a specific non-compactly supported sampling function; here we use a different argument to obtain quantum inequalities for a class of smooth, even and non-negative sampling functions which are either compactly supported or decay rapidly at infinity. Our results hold in dd-dimensional Minkowski space (d2d\ge 2) for the free real scalar field of mass m0m\ge 0. We discuss various features of our bounds in 2 and 4 dimensions. In particular, for massless field theory in 2-dimensional Minkowski space, we show that our quantum inequality is weaker than Flanagan's optimal bound by a factor of 3/2.Comment: REVTeX, 13 pages and 2 figures. Minor typos corrected, one reference adde

    Quantum Inequalities and Singular Energy Densities

    Full text link
    There has been much recent work on quantum inequalities to constrain negative energy. These are uncertainty principle-type restrictions on the magnitude and duration of negative energy densities or fluxes. We consider several examples of apparent failures of the quantum inequalities, which involve passage of an observer through regions where the negative energy density becomes singular. We argue that this type of situation requires one to formulate quantum inequalities using sampling functions with compact support. We discuss such inequalities, and argue that they remain valid even in the presence of singular energy densities.Comment: 18 pages, LaTex, 2 figures, uses eps

    The characteristics and limitations of the MPS/MMS battery charging system

    Get PDF
    A series of tests was conducted on two 12 ampere hour nickel cadmium batteries under a simulated cycle regime using the multiple voltage versus temperature levels designed into the modular power system (MPS). These tests included: battery recharge as a function of voltage control level; temperature imbalance between two parallel batteries; a shorted or partially shorted cell in one of the two parallel batteries; impedance imbalance of one of the parallel battery circuits; and disabling and enabling one of the batteries from the bus at various charge and discharge states. The results demonstrate that the eight commandable voltage versus temperature levels designed into the MPS provide a very flexible system that not only can accommodate a wide range of normal power system operation, but also provides a high degree of flexibility in responding to abnormal operating conditions
    corecore