6,391 research outputs found

    Excitations in confined helium

    Full text link
    We design models for helium in matrices like aerogel, Vycor or Geltech from a manifestly microscopic point of view. For that purpose, we calculate the dynamic structure function of 4He on Si substrates and between two Si walls as a function of energy, momentum transfer, and the scattering angle. The angle--averaged results are in good agreement with the neutron scattering data; the remaining differences can be attributed to the simplified model used here for the complex pore structure of the materials. A focus of the present work is the detailed identification of coexisting layer modes and bulk--like excitations, and, in the case of thick films, ripplon excitations. Involving essentially two--dimensional motion of atoms, the layer modes are sensitive to the scattering angle.Comment: Phys. Rev. B (2003, in press

    Chandra Observations of Extended X-ray Emission in Arp 220

    Full text link
    We resolve the extended X-ray emission from the prototypical ultraluminous infrared galaxy Arp 220. Extended, faint edge-brightened, soft X-ray lobes outside the optical galaxy are observed to a distance of 10 to 15 kpc on each side of the nuclear region. Bright plumes inside the optical isophotes coincide with the optical line emission and extend 11 kpc from end to end across the nucleus. The data for the plumes cannot be fit by a single temperature plasma, and display a range of temperatures from 0.2 to 1 keV. The plumes emerge from bright, diffuse circumnuclear emission in the inner 3 kpc centered on the Halpha peak, which is displaced from the radio nuclei. There is a close morphological correspondence between the Halpha and soft X-ray emission on all spatial scales. We interpret the plumes as a starburst-driven superwind, and discuss two interpretations of the emission from the lobes in the context of simulations of the merger dynamics of Arp 220.Comment: Accepted for publication in ApJ; see also astro-ph/0208477 (Paper 1

    Quantum sticking, scattering and transmission of 4He atoms from superfluid 4He surfaces

    Get PDF
    We develop a microscopic theory of the scattering, transmission, and sticking of 4He atoms impinging on a superfluid 4He slab at near normal incidence, and inelastic neutron scattering from the slab. The theory includes coupling between different modes and allows for inelastic processes. We find a number of essential aspects that must be observed in a physically meaningful and reliable theory of atom transmission and scattering; all are connected with multiparticle scattering, particularly the possibility of energy loss. These processes are (a) the coupling to low-lying (surface) excitations (ripplons/third sound) which is manifested in a finite imaginary part of the self energy, and (b) the reduction of the strength of the excitation in the maxon/roton region

    A review of malaria epidemiology and control in Papua New Guinea 1900 to 2021: progress made and future directions

    Get PDF
    The research and control of malaria has a long history in Papua New Guinea, sometimes resulting in substantial changes to the distribution of infection and transmission dynamics in the country. There have been four major periods of malaria control in PNG, with the current control programme having commenced in 2004. Each previous control programme was successful in reducing malaria burden in the country, but multiple factors led to programme failures and eventual breakdown. A comprehensive review of the literature dating from 1900 to 2021 was undertaken to summarize control strategies, epidemiology, vector ecology and environmental drivers of malaria transmission in PNG. Evaluations of historical control programs reveal poor planning and communication, and di culty in sustaining financial investment once malaria burden had decreased as common themes in the breakdown of previous programs. Success of current and future malaria control programs in PNG is contingent on adequate planning and management of control programs, effective communication and engagement with at-risk populations, and cohesive targeted approaches to sub-national and national control and elimination

    Observation of Single Transits in Supercooled Monatomic Liquids

    Full text link
    A transit is the motion of a system from one many-particle potential energy valley to another. We report the observation of transits in molecular dynamics (MD) calculations of supercooled liquid argon and sodium. Each transit is a correlated simultaneous shift in the equilibrium positions of a small local group of particles, as revealed in the fluctuating graphs of the particle coordinates versus time. This is the first reported direct observation of transit motion in a monatomic liquid in thermal equilibrium. We found transits involving 2 to 11 particles, having mean shift in equilibrium position on the order of 0.4 R_1 in argon and 0.25 R_1 in sodium, where R_1 is the nearest neighbor distance. The time it takes for a transit to occur is approximately one mean vibrational period, confirming that transits are fast.Comment: 19 pages, 8 figure

    Extreme Pyroconvective Updrafts During a Megafire

    Get PDF
    Airborne cloud radar reveals extreme wildfire updrafts (~60 m s−1) and downdrafts (~30 m s−1) rivaling those in supercell thunderstorms. These extreme vertical velocities occur through a 3-km-deep layer and below the base of a developing pyrocumulonimbus (pyroCb) cloud, which extends to the tropopause at 12 km. In situ aircraft sampling shows updrafts are linked to large temperature and moisture excesses but remain subsaturated at flight level (i.e., below cloud base). Parcel estimates using the in situ data help explain how these “hot-moist” updrafts trigger the overlying pyroCb. The extreme vertical motions observed also pose a previously undocumented aviation hazard

    Spatial prediction of malaria prevalence in Papua New Guinea: a comparison of Bayesian decision network and multivariate regression modelling approaches for improved accuracy in prevalence prediction

    Get PDF
    BACKGROUND: Considerable progress towards controlling malaria has been made in Papua New Guinea through the national malaria control programme's free distribution of long-lasting insecticidal nets, improved diagnosis with rapid diagnostic tests and improved access to artemisinin combination therapy. Predictive prevalence maps can help to inform targeted interventions and monitor changes in malaria epidemiology over time as control efforts continue. This study aims to compare the predictive performance of prevalence maps generated using Bayesian decision network (BDN) models and multilevel logistic regression models (a type of generalized linear model, GLM) in terms of malaria spatial risk prediction accuracy. METHODS: Multilevel logistic regression models and BDN models were developed using 2010/2011 malaria prevalence survey data collected from 77 randomly selected villages to determine associations of Plasmodium falciparum and Plasmodium vivax prevalence with precipitation, temperature, elevation, slope (terrain aspect), enhanced vegetation index and distance to the coast. Predictive performance of multilevel logistic regression and BDN models were compared by cross-validation methods. RESULTS: Prevalence of P. falciparum, based on results obtained from GLMs was significantly associated with precipitation during the 3 driest months of the year, June to August (ÎČ = 0.015; 95% CI = 0.01-0.03), whereas P. vivax infection was associated with elevation (ÎČ = - 0.26; 95% CI = - 0.38 to - 3.04), precipitation during the 3 driest months of the year (ÎČ = 0.01; 95% CI = - 0.01-0.02) and slope (ÎČ = 0.12; 95% CI = 0.05-0.19). Compared with GLM model performance, BDNs showed improved accuracy in prediction of the prevalence of P. falciparum (AUC = 0.49 versus 0.75, respectively) and P. vivax (AUC = 0.56 versus 0.74, respectively) on cross-validation. CONCLUSIONS: BDNs provide a more flexible modelling framework than GLMs and may have a better predictive performance when developing malaria prevalence maps due to the multiple interacting factors that drive malaria prevalence in different geographical areas. When developing malaria prevalence maps, BDNs may be particularly useful in predicting prevalence where spatial variation in climate and environmental drivers of malaria transmission exists, as is the case in Papua New Guinea
    • 

    corecore