151 research outputs found

    A Core Response to the CDX2 Homeoprotein During Development and in Pathologies

    Get PDF
    Whether a gene involved in distinct tissue or cell functions exerts a core of common molecular activities is a relevant topic in evolutionary, developmental, and pathological perspectives. Here, we addressed this question by focusing on the transcription factor and regulator of chromatin accessibility encoded by the Cdx2 homeobox gene that plays important functions during embryonic development and in adult diseases. By integrating RNAseq data in mouse embryogenesis, we unveiled a core set of common genes whose expression is responsive to the CDX2 homeoprotein during trophectoderm formation, posterior body elongation and intestinal specification. ChIPseq data analysis also identified a set of common chromosomal regions targeted by CDX2 at these three developmental steps. The transcriptional core set of genes was then validated with transgenic mouse models of loss or gain of function of Cdx2. Finally, based on human cancer data, we highlight the relevance of these results by displaying a significant number of human orthologous genes to the core set of mouse CDX2-responsive genes exhibiting an altered expression along with CDX2 in human malignancies

    Modulation of mitochondrial capacity and angiogenesis by red wine polyphenols via estrogen receptor, NADPH oxidase and nitric oxide synthase pathways.

    Get PDF
    Red wine polyphenolic compounds (RWPC) are reported to exert vasculoprotective properties on endothelial cells, involving nitric oxide (NO) release via a redox-sensitive pathway. This NO release involves the activation of the estrogen receptor-alpha (ERα). Paradoxical effects of a RWPC treatment occur in a rat model of post-ischemic neovascularization, where a low-dose is pro-angiogenic while a higher dose is anti-angiogenic. NO and ERα are key regulators of mitochondrial capacity, and angiogenesis is a highly energetic process associated with mitochondrial biogenesis. However, whether RWPC induces changes in mitochondrial capacity has never been addressed. We investigated the effects of RWPC at low (10(-4)g/l, LCP) and high concentration (10(-2)g/l, HCP) in human endothelial cells. Mitochondrial respiration, expression of mitochondrial biogenesis factors and mitochondrial DNA content were assessed using oxygraphy and quantitative PCR respectively. In vitro capillary formation using ECM gel(®) was also performed. Treatment with LCP increased mitochondrial respiration, with a maximal effect achieved at 48h. LCP also increased expression of several mitochondrial biogenesis factors and mitochondrial DNA content. In contrast, HCP did not affect these parameters. Furthermore, LCP modulated both mitochondrial capacity and angiogenesis through mechanisms sensitive to ER, NADPH oxidase and NO-synthase inhibitors. Finally, the inhibition of mitochondrial protein synthesis abolished the pro-angiogenic capacity of LCP. These results suggest a possible association between the modulation of mitochondrial capacity by LCP and its pro-angiogenic activity. These data provide evidence for a role of mitochondria in the regulation of angiogenesis by RWPC

    Estrogen Receptor α Participates to the Beneficial Effect of Red Wine Polyphenols in a Mouse Model of Obesity-Related Disorders

    Get PDF
    Red wine polyphenol extracts (polyphenols) ameliorate cardiovascular and metabolic disorders associated with obesity. Previously, we demonstrated that the alpha isoform of estrogen receptor (ERα) triggers the vascular protection of polyphenols. Here, we investigated the contribution of ERα on the effects of polyphenols on cardiovascular and metabolic alterations associated with obesity. We used ovariectomized wild type or ERα-deficient mice receiving standard (SD) or western (WD) diets, or SD and WD containing polyphenols (SD+polyphenols and WD+polyphenols, respectively) over a 12-week period. Body weight was measured during treatment. Echocardiography examination was performed before sacrifice. Blood and tissues were sampled for biochemical and functional analysis with respect to nitric oxide (NO(•)) and oxidative stress. Vascular reactivity and liver mitochondrial complexes were analyzed. In WD-fed mice, polyphenols reduced adiposity, plasma triglycerides and oxidative stress in aorta, heart, adipose and liver tissues and enhanced NO(•) production in aorta and liver. ERα deletion prevented or reduced the beneficial effects of polyphenols, especially visceral adiposity, aortic and liver oxidative stresses and NO(•) bioavailability. ERα deletion, however, had no effect on polyphenol\u27s ability to decrease the fat accumulation and oxidative stress of subcutaneous adipose tissue. Also, ERα deletion did not modify the decrease of ROS levels induced by polyphenols treatment in the visceral adipose tissue and heart from WD-fed mice. Dietary supplementation of polyphenols remarkably attenuates features of metabolic syndrome; these effects are partially mediated by ERα-dependent mechanisms. This study demonstrates the therapeutic potential of this extract in metabolic and cardiovascular alterations linked to excessive energy intake

    Severe head dysgenesis resulting from imbalance between anterior and posterior ontogenetic programs

    Get PDF
    Head dysgenesis is a major cause of fetal demise and craniofacial malformation. Although mutations in genes of the head ontogenetic program have been reported, many cases remain unexplained. Head dysgenesis has also been related to trisomy or amplification of the chromosomal region overlapping the CDX2 homeobox gene, a master element of the trunk ontogenetic program. Hence, we investigated the repercussion on head morphogenesis of the imbalance between the head and trunk ontogenetic programs, by means of ectopic rostral expression of CDX2 at gastrulation. This caused severe malformations affecting the forebrain and optic structures, and also the frontonasal process associated with defects in neural crest cells colonization. These malformations are the result of the downregulation of genes of the head program together with the abnormal induction of trunk program genes. Together, these data indicate that the imbalance between the anterior and posterior ontogenetic programs in embryos is a new possible cause of head dysgenesis during human development, linked to defects in setting up anterior neuroectodermal structures

    Delphinidin inhibits VEGF induced-mitochondrial biogenesis and Akt activation in endothelial cells.

    Get PDF
    Delphinidin, an anthocyanin present in red wine, has been reported to exert vasculoprotective properties on endothelial cells, including vasorelaxing and anti-apoptotic effects. Moreover, delphinidin treatment in a rat model of post-ischemic neovascularization has been described to exert anti-angiogenic property. Angiogenesis is an energetic process and VEGF-induced angiogenesis is associated with mitochondrial biogenesis. However, whether delphinidin induces changes in mitochondrial biogenesis has never been addressed. Effects of delphinidin were investigated in human endothelial cells at a concentration described to be anti-angiogenic in vitro (10−2 g/l). mRNA expression of mitochondrial biogenesis factors, mitochondrial respiration, DNA content and enzyme activities were assessed after 48 h of stimulation. Delphinidin increased mRNA expression of several mitochondrial biogenesis factors, including NRF1, ERRα, Tfam, Tfb2m and PolG but did not affect neither mitochondrial respiration, DNA content nor enzyme activities. In presence of delphinidin, VEGF failed to increase mitochondrial respiration, DNA content, complex IV activity and Akt activation in endothelial cells. These results suggest a possible association between inhibition of VEGF-induced mitochondrial biogenesis through Akt pathway by delphinidin and its anti-angiogenic effect, providing a novel mechanism sustaining the beneficial effect of delphinidin against pathologies associated with excessive angiogenesis such as cancers

    Propionyl-L-carnitine corrects metabolic and cardiovascular alterations in diet-induced obese mice and improves liver respiratory chain activity

    Get PDF
    AIMS: Obesity is a primary contributor to acquired insulin resistance leading to the development of type 2 diabetes and cardiovascular alterations. The carnitine derivate, propionyl-L-carnitine (PLC), plays a key role in energy control. Our aim was to evaluate metabolic and cardiovascular effects of PLC in diet-induced obese mice. METHODS: C57BL/6 mice were fed a high-fat diet for 9 weeks and then divided into two groups, receiving either free- (vehicle-HF) or PLC-supplemented water (200 mg/kg/day) during 4 additional weeks. Standard diet-fed animals were used as lean controls (vehicle-ST). Body weight and food intake were monitored. Glucose and insulin tolerance tests were assessed, as well as the HOMA(IR), the serum lipid profile, the hepatic and muscular mitochondrial activity and the tissue nitric oxide (NO) liberation. Systolic blood pressure, cardiac and endothelial functions were also evaluated. RESULTS: Vehicle-HF displayed a greater increase of body weight compared to vehicle-ST that was completely reversed by PLC treatment without affecting food intake. PLC improved the insulin-resistant state and reversed the increased total cholesterol but not the increase in free fatty acid, triglyceride and HDL/LDL ratio induced by high-fat diet. Vehicle-HF exhibited a reduced cardiac output/body weight ratio, endothelial dysfunction and tissue decrease of NO production, all of them being improved by PLC treatment. Finally, the decrease of hepatic mitochondrial activity by high-fat diet was reversed by PLC. CONCLUSIONS: Oral administration of PLC improves the insulin-resistant state developed by obese animals and decreases the cardiovascular risk associated to this metabolic alteration probably via correction of mitochondrial function

    IL-26 is overexpressed in chronically HCV-infected patients and enhances TRAIL-mediated cytotoxicity and interferon production by human NK cells

    Get PDF
    Objective Interleukin-26 (IL-26) is a member of the IL-10 cytokine family, first discovered based on its peculiar expression by virus-transformed T cells. IL-26 is overexpressed in chronic inflammation (rheumatoid arthritis and Crohn’s disease) and induces proinflammatory cytokines by myeloid cells and some epithelial cells. We thus investigated the expression and potential role of IL-26 in chronic HCV infection, a pathology associated with chronic inflammation.Design IL-26 was quantified in a cohort of chronically HCV-infected patients, naive of treatment and its expression in the liver biopsies investigated by immunohistochemistry. We also analysed the ability of IL-26 to modulate the activity of natural killer (NK) cells, which control HCV infection. Results The serum levels of IL-26 are enhanced in chronically HCV-infected patients, mainly in those with severe liver inflammation. Immunohistochemistry reveals an intense IL-26 staining in liver lesions, mainly in infiltrating CD3+ cells. We also show that NK cells from healthy subjects and from HCV-infected patients are sensitive to IL-26. IL-26 upregulates membrane tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) expression on CD16− CD56bright NK cells, enabling them to kill HCV-infected hepatoma cells, with the same efficacy as interferon (IFN)-α-treated NK cells. IL-26 also induces the expression of the antiviral cytokines IFN-β and IFN-γ, and of the proinflammatory cytokines IL-1β and TNF-α by NK cells. Conclusions This study highlights IL-26 as a new player in the inflammatory and antiviral immune responses associated with chronic HCV infection
    • …
    corecore