177 research outputs found
The Grizzly, November 16, 2017
Democrats Sweep Local Elections • Sustainability Office Recognized by the Princeton Review • Bear2Bear Fund Aids Students with Emergency Expenses • UCDC Fall Show, Once Removed, Opens This Thursday • Pride Shines at Ursinus • Build Character, Write Now • Opinions: Student Leaders Must be Better Allies Through Their Actions; Paradise Papers Reveal Unethical Tax Avoidance by Tech Companies • UCXC Finishes Strong • Men\u27s Basketball Picked Fourth in Preseason Pollhttps://digitalcommons.ursinus.edu/grizzlynews/1632/thumbnail.jp
The microbiome of the gastrointestinal tract of a range-shifting marine herbivorous fish
Globally, marine species\u27 distributions are being modified due to rising ocean temperatures. Increasing evidence suggests a circum-global pattern of poleward extensions in the distributions of many tropical herbivorous species, including the ecologically important rabbitfis
Cancellation of vorticity in steady-state non-isentropic flows of complex fluids
In steady-state non-isentropic flows of perfect fluids there is always
thermodynamic generation of vorticity when the difference between the product
of the temperature with the gradient of the entropy and the gradient of total
enthalpy is different from zero. We note that this property does not hold in
general for complex fluids for which the prominent influence of the material
substructure on the gross motion may cancel the thermodynamic vorticity. We
indicate the explicit condition for this cancellation (topological transition
from vortex sheet to shear flow) for general complex fluids described by
coarse-grained order parameters and extended forms of Ginzburg-Landau energies.
As a prominent sample case we treat first Korteweg's fluid, used commonly as a
model of capillary motion or phase transitions characterized by diffused
interfaces. Then we discuss general complex fluids. We show also that, when the
entropy and the total enthalpy are constant throughout the flow, vorticity may
be generated by the inhomogeneous character of the distribution of material
substructures, and indicate the explicit condition for such a generation. We
discuss also some aspects of unsteady motion and show that in two-dimensional
flows of incompressible perfect complex fluids the vorticity is in general not
conserved, due to a mechanism of transfer of energy between different levels.Comment: 12 page
Comparative phylogeography of reef fishes from the Gulf of Aden to the Arabian Sea reveals two cryptic lineages
Arabian Sea is a heterogeneous region with high coral cover and warm stable conditions at the western end (Djibouti), in contrast to sparse coral cover, cooler temperatures, and upwelling at the eastern end (southern Oman). We tested for barriers to dispersal across this region (including the Gulf of Aden and Gulf of Oman), using mitochondrial DNA surveys of 11 reef fishes. Study species included seven taxa from six families with broad distributions across the Indo-Pacific and four species restricted to the Arabian Sea (and adjacent areas). Nine species showed no significant genetic partitions, indicating connectivity among contrasting environments spread across 2000 km. One butterflyfish (Chaetodon melannotus) and a snapper (Lutjanus kasmira) showed phylogenetic divergences of d = 0.008 and 0.048, respectively, possibly indicating cryptic species within these broadly distributed taxa. These genetic partitions at the western periphery of the Indo-Pacific reflect similar partitions recently discovered at the eastern periphery of the Indo-Pacific (the Hawaiian and the Marquesan Archipelagos), indicating that these disjunctive habitats at the ends of the range may serve as evolutionary incubators for coral reef organisms. © 2017 Springer-Verlag Berlin HeidelbergTh
Ice ages and butterflyfishes: Phylogenomics elucidates the ecological and evolutionary history of reef fishes in an endemism hotspot
For tropical marine species, hotspots of endemism occur in peripheral areas furthest from the center of diversity, but the evolutionary processes that lead to their origin remain elusive. We test several hypotheses related to the evolution of peripheral endemics by sequencing ultraconserved element (UCE) loci to produce a genome-scale phylogeny of 47 butterflyfish species (family Chaetodontidae) that includes all shallow water butterflyfish from the coastal waters of the Arabian Peninsula (i.e., Red Sea to Arabian Gulf) and their close relatives. Bayesian tree building methods produced a well-resolved phylogeny that elucidated the origins of butterflyfishes in this hotspots of endemism. We show that UCEs, often used to resolve deep evolutionary relationships, represent an important tool to assess the mechanisms underlying recently diverged taxa. Our analyses indicate that unique environmental conditions in the coastal waters of the Arabian Peninsula probably contributed to the formation of endemic butterflyfishes. Older endemic species are also associated with narrow versus broad depth ranges, suggesting that adaptation to deeper coral reefs in this region occurred only recently (<1.75Â Ma). Even though deep reef environments were drastically reduced during the extreme low sea level stands of glacial ages, shallow reefs persisted, and as such there was no evidence supporting mass extirpation of fauna in this region
Modeling resilience and sustainability in ancient agricultural systems
The reasons why people adopt unsustainable agricultural practices, and the ultimate environmental implications of those practices, remain incompletely understood in the present world. Archaeology, however, offers unique datasets on coincident cultural and ecological change, and their social and environmental effects. This article applies concepts derived from ecological resilience thinking to assess the sustainability of agricultural practices as a result of long-term interactions between political, economic, and environmental systems. Using the urban center of Gordion, in central Turkey, as a case study, it is possible to identify mismatched social and ecological processes on temporal, spatial, and organizational scales, which help to resolve thresholds of resilience. Results of this analysis implicate temporal and spatial mismatches as a cause for local environmental degradation, and increasing extralocal economic pressures as an ultimate cause for the adoption of unsustainable land-use practices. This analysis suggests that a research approach that integrates environmental archaeology with a resilience perspective has considerable potential for explicating regional patterns of agricultural change and environmental degradation in the past
Assessing the extent and timing of chemosensory impairments during COVID-19 pandemic
Chemosensory impairments have been established as a specific indicator of COVID-19. They affect most patients and may persist long past the resolution of respiratory symptoms, representing an unprecedented medical challenge. Since the SARS-CoV-2 pandemic started, we now know much more about smell, taste, and chemesthesis loss associated with COVID-19. However, the temporal dynamics and characteristics of recovery are still unknown. Here, capitalizing on data from the Global Consortium for Chemosensory Research (GCCR) crowdsourced survey, we assessed chemosensory abilities after the resolution of respiratory symptoms in participants diagnosed with COVID-19 during the first wave of the pandemic in Italy. This analysis led to the identification of two patterns of chemosensory recovery, partial and substantial, which were found to be associated with differential age, degrees of chemosensory loss, and regional patterns. Uncovering the self-reported phenomenology of recovery from smell, taste, and chemesthetic disorders is the first, yet essential step, to provide healthcare professionals with the tools to take purposeful and targeted action to address chemosensory disorders and their severe discomfort
Assessing the extent and timing of chemosensory impairments during COVID-19 pandemic
Chemosensory impairments have been established as a specific indicator of COVID-19. They affect most patients and may persist long past the resolution of respiratory symptoms, representing an unprecedented medical challenge. Since the SARS-CoV-2 pandemic started, we now know much more about smell, taste, and chemesthesis loss associated with COVID-19. However, the temporal dynamics and characteristics of recovery are still unknown. Here, capitalizing on data from the Global Consortium for Chemosensory Research (GCCR) crowdsourced survey, we assessed chemosensory abilities after the resolution of respiratory symptoms in participants diagnosed with COVID-19 during the first wave of the pandemic in Italy. This analysis led to the identification of two patterns of chemosensory recovery, partial and substantial, which were found to be associated with differential age, degrees of chemosensory loss, and regional patterns. Uncovering the self-reported phenomenology of recovery from smell, taste, and chemesthetic disorders is the first, yet essential step, to provide healthcare professionals with the tools to take purposeful and targeted action to address chemosensory disorders and their severe discomfort
Naturally occurring hybrids of coral reef butterflyfishes have similar fitness compared to parental species.
Hybridisation can produce evolutionary novelty by increasing fitness and adaptive capacity. Heterosis, or hybrid vigour, has been documented in many plant and animal taxa, and is a notable consequence of hybridisation that has been exploited for decades in agriculture and aquaculture. On the contrary, loss of fitness in naturally occurring hybrid taxa has been observed in many cases. This can have negative consequences for the parental species involved (wasted reproductive effort), and has raised concerns for species conservation. This study evaluates the relative fitness of previously documented butterflyfish hybrids of the genus Chaetodon from the Indo-Pacific suture zone at Christmas Island. Histological examination confirmed the reproductive viability of Chaetodon hybrids. Examination of liver lipid content showed that hybrid body condition was not significantly different from parent species body condition. Lastly, size at age data revealed no difference in growth rates and asymptotic length between hybrids and parent species. Based on the traits measured in this study, naturally occurring hybrids of Chaetodon butterflyfishes have similar fitness to their parental species, and are unlikely to supplant parental species under current environmental conditions at the suture zone. However, given sufficient fitness and ongoing genetic exchange between the respective parental species, hybrids are likely to persist within the suture zone
High Connectivity in the Deepwater Snapper Pristipomoides filamentosus (Lutjanidae) across the Indo-Pacific with Isolation of the Hawaiian Archipelago
In the tropical Indo-Pacific, most phylogeographic studies have focused on the shallow-water taxa that inhabit reefs to approximately 30 m depth. Little is known about the large predatory fishes, primarily snappers (subfamily Etelinae) and groupers (subfamily Epinephelinae) that occur at 100–400 m. These long-lived, slow-growing species support fisheries across the Indo-Pacific, yet no comprehensive genetic surveys within this group have been conducted. Here we contribute the first range-wide survey of a deepwater Indo-Pacific snapper, Pristipomoides filamentosus, with special focus on Hawai'i. We applied mtDNA cytochrome b and 11 microsatellite loci to 26 samples (N = 1,222) collected across 17,000 km from Hawai'i to the western Indian Ocean. Results indicate that P. filamentosus is a highly dispersive species with low but significant population structure (mtDNA ΦST = 0.029, microsatellite FST = 0.029) due entirely to the isolation of Hawai'i. No population structure was detected across 14,000 km of the Indo-Pacific from Tonga in the Central Pacific to the Seychelles in the western Indian Ocean, a pattern rarely observed in reef species. Despite a long pelagic phase (60–180 days), interisland dispersal as adults, and extensive gene flow across the Indo-Pacific, P. filamentosus is unable to maintain population connectivity with Hawai'i. Coalescent analyses indicate that P. filamentosus may have colonized Hawai'i 26 K–52 K y ago against prevailing currents, with dispersal away from Hawai'i dominating migration estimates. P. filamentosus harbors low genetic diversity in Hawai'i, a common pattern in marine fishes, and our data indicate a single archipelago-wide stock. However, like the Hawaiian Grouper, Hyporthodus quernus, this snapper had several significant pairwise comparisons (FST) clustered around the middle of the archipelago (St. Rogatien, Brooks Banks, Gardner) indicating that this region may be isolated or (more likely) receives input from Johnston Atoll to the south
- …