2,549 research outputs found

    Active immunization by a dengue virus-induced cytokine

    Get PDF
    Dengue type 2 virus (DV)-induced cytotoxic factor (CF) is capable of reproducing various pathological lesions in mice that are seen in human dengue. The present study was undertaken to investigate the protective effect of active immunization of mice with CF, Mice were immunized with 5 μ g of CF and prevention of CF-induced increase in capillary permeability and damage to the blood brain barrier were studied at weekly intervals, up to 48 weeks, by challenging with 3 μ g of CF, Maximum protection against increase in capillary permeability and damage to the blood-brain barrier was observed in week 4 after immunization. A breakthrough in the protection occurred with higher doses of CF in a dose-dependent manner. Challenge with a lethal intracerebral (i.e.) dose of DV showed significantly prolonged mean survival time and delayed onset of symptoms of sickness in the immunized mice compared with the normal mice, but the titre of the virus in the brain was similar in the two groups. On i.p. challenge with the virus the protection against damage to the blood-brain barrier was 86± 7% at week 4 and 17± 4% at week 26 after immunization. Sera obtained from the immunized mice showed the presence of CF-specific antibodies by ELISA, Western blot, and by neutralization of the cytotoxic activity of CF in vitro. The present study describes successful prevention of a cytokine-induced pathology by specific active immunization

    iPTF16abc and the population of Type Ia supernovae: Comparing the photospheric, transitional and nebular phases

    Get PDF
    Key information about the progenitor system and the explosion mechanism of Type Ia supernovae (SNe~Ia) can be obtained from early observations, within a few days from explosion. iPTF16abc was discovered as a young SN~Ia with excellent early time data. Here, we present photometry and spectroscopy of the SN in the nebular phase. A comparison of the early time data with a sample of SNe~Ia shows distinct features, differing from normal SNe~Ia at early phases but similar to normal SNe~Ia at a few weeks after maximum light (i.e. the transitional phase) and well into the nebular phase. The transparency timescales (t0t_0) for this sample of SNe~Ia range between ∼\sim 25 and 41 days indicating a diversity in the ejecta masses. t0t_0 also weakly correlates with the peak bolometric luminosity, consistent with the interpretation that SNe with higher ejecta masses would produce more 56^{56}Ni. Comparing the t0t_0 and the maximum luminosity, Lmax_{max}\, distribution of a sample of SNe~Ia to predictions from a wide range of explosion models we find an indication that the sub-Chandrasekhar mass models span the range of observed values. However, the bright end of the distribution can be better explained by Chandrasekhar mass delayed detonation models, hinting at multiple progenitor channels to explain the observed bolometric properties of SNe~Ia. iPTF16abc appears to be consistent with the predictions from the Mch_{ch} models.Comment: 13 pages, 8 figures, accepted for publication in MNRA

    Breakdown of the blood-brain barrier during dengue virus infection of mice

    Get PDF
    A breakdown of the blood-brain barrier occurred in mice inoculated intracerebrally (i.c.) or intraperitoneally (i.p.) with dengue virus type 2 (DEN2). This resulted in leakage of protein-bound Evans blue dye and 51Cr-labelled erythrocytes into the brain tissue. The leakage increased with time after infection and coincided with an increase of a DEN2-induced cytokine, the cytotoxic factor (CF), in the spleens of such mice. The titres of virus in the brain increased exponentially in i.c. inoculated mice but the virus was not detected in brains of mice given DEN2 by the i.p. route. Similar breakdown of the blood-brain barrier also occurred in mice inoculated intravenously with CF; the damage was dose-dependent and the vascular integrity was restored during the 3 h period after inoculation. Treatment of mice with antihistamine drugs, blocking H1 or H2 receptors, decreased the DEN2-induced protein leakage by up to 50% in i.c. inoculated mice and up to 92% in those inoculated i.p. Indomethacin, a prostaglandin synthetase inhibitor, had no effect. In i.c. inoculated mice protein leakage was inhibited by about 60% by treatment with CF-specific (CFA) or DEN2-specific antisera (DEN2A) whereas protection was complete with the combined treatment with both antisera. On the other hand, in i.p. inoculated mice the inhibition of protein leakage was 80 to 89% with CFA. These findings show a breakdown of the blood-brain barrier leading to cerebral oedema during DEN2 infection which is mediated via the release of histamine by a virus-induced cytokine

    The first accurate parallax distance to a black hole

    Get PDF
    Using astrometric VLBI observations, we have determined the parallax of the black hole X-ray binary V404 Cyg to be 0.418 +/- 0.024 milliarcseconds, corresponding to a distance of 2.39 +/- 0.14 kpc, significantly lower than the previously accepted value. This model-independent estimate is the most accurate distance to a Galactic stellar-mass black hole measured to date. With this new distance, we confirm that the source was not super-Eddington during its 1989 outburst. The fitted distance and proper motion imply that the black hole in this system likely formed in a supernova, with the peculiar velocity being consistent with a recoil (Blaauw) kick. The size of the quiescent jets inferred to exist in this system is less than 1.4 AU at 22 GHz. Astrometric observations of a larger sample of such systems would provide useful insights into the formation and properties of accreting stellar-mass black holes.Comment: Accepted for publication in ApJ Letters. 6 pages, 2 figure

    Genetic algorithm based input selection for a neural network function approximator with applications to SSME health monitoring

    Get PDF
    A genetic algorithm is used to select the inputs to a neural network function approximator. In the application considered, modeling critical parameters of the space shuttle main engine (SSME), the functional relationship between measured parameters is unknown and complex. Furthermore, the number of possible input parameters is quite large. Many approaches have been used for input selection, but they are either subjective or do not consider the complex multivariate relationships between parameters. Due to the optimization and space searching capabilities of genetic algorithms they were employed to systematize the input selection process. The results suggest that the genetic algorithm can generate parameter lists of high quality without the explicit use of problem domain knowledge. Suggestions for improving the performance of the input selection process are also provided

    Discrete Audio Representation as an Alternative to Mel-Spectrograms for Speaker and Speech Recognition

    Full text link
    Discrete audio representation, aka audio tokenization, has seen renewed interest driven by its potential to facilitate the application of text language modeling approaches in audio domain. To this end, various compression and representation-learning based tokenization schemes have been proposed. However, there is limited investigation into the performance of compression-based audio tokens compared to well-established mel-spectrogram features across various speaker and speech related tasks. In this paper, we evaluate compression based audio tokens on three tasks: Speaker Verification, Diarization and (Multi-lingual) Speech Recognition. Our findings indicate that (i) the models trained on audio tokens perform competitively, on average within 1%1\% of mel-spectrogram features for all the tasks considered, and do not surpass them yet. (ii) these models exhibit robustness for out-of-domain narrowband data, particularly in speaker tasks. (iii) audio tokens allow for compression to 20x compared to mel-spectrogram features with minimal loss of performance in speech and speaker related tasks, which is crucial for low bit-rate applications, and (iv) the examined Residual Vector Quantization (RVQ) based audio tokenizer exhibits a low-pass frequency response characteristic, offering a plausible explanation for the observed results, and providing insight for future tokenizer designs.Comment: Preprint. Submitted to ICASSP 202

    Multi-wavelength INTEGRAL NEtwork (MINE) observations of the microquasar GRS 1915+105

    Full text link
    We present the international collaboration MINE (Multi-lambda Integral NEtwork) aimed at conducting multi-wavelength observations of X-ray binaries and microquasars simultaneously with the INTEGRAL gamma-ray satellite. We will focus on the 2003 March-April campaign of observations of the peculiar microquasar GRS 1915+105 gathering radio, IR and X-ray data. The source was observed 3 times in the plateau state, before and after a major radio and X-ray flare. It showed strong steady optically thick radio emission corresponding to powerful compact jets resolved in the radio images, bright near-infrared emission, a strong QPO at 2.5 Hz in the X-rays and a power law dominated spectrum without cutoff in the 3-300 keV range. We compare the different observations, their multi-wavelength light curves, including JEM-X, ISGRI and SPI, and the parameters deduced from fitting the spectra obtained with these instruments on board INTEGRAL.Comment: 4 pages, 9 fig., Proc. of the 5th INTEGRAL Workshop (Feb. 16-20 2004), to be published by ES

    Simultaneous multi-wavelength observations of microquasars (the MINE collaboration)

    Full text link
    We present the international collaboration MINE (Multi-lambda INTEGRAL NEtwork) aimed at conducting multi-wavelength observations of microquasars simultaneously with the INTEGRAL satellite. The first results on GRS 1915+105 are encouraging and those to come should help us to understand the physics of the accretion and ejection phenomena around a compact object.Comment: 2 p, 3 fig., proc. of the IAU Coll. 194, ``Compact Binaries in the Galaxy and Beyond'', Nov. 2003, La Paz, Mexico, to be published in the Conf. Series of Revista Mexicana de Astronomia y Astrofisica, Eds. G. Tovmassian & E. Sio

    Constraining the Observer Angle of the Kilonova AT2017gfo Associated with GW170817: Implications for the Hubble Constant

    Get PDF
    There is a strong degeneracy between the luminosity distance (D L) and the observer viewing angle (θ obs; hereafter viewing angle) of the gravitational wave (GW) source with an electromagnetic counterpart, GW170817. Here, for the first time, we present independent constraints on IMG ALIGN="MIDDLE" ALT="θobs=32.5−−9.7∘+11.7{θ}_{\mathrm{obs}}={32.5}-{-9.7}^{^\circ +11.7}" SRC="apjab5799ieqn1.gif"/from broadband photometry of the kilonova (kN) AT2017gfo associated with GW170817. These constraints are consistent with independent results presented in the literature using the associated gamma-ray burst GRB 170817A. Combining the constraints on θ obs with the GW data, we find an improvement of 24% on H 0. The observer angle constraints are insensitive to other model parameters, e.g., the ejecta mass, the half-opening angle of the lanthanide-rich region and the temperature. A broad wavelength coverage extending to the near-infrared is helpful to robustly constrain θ obs. While the improvement on H 0 presented here is smaller than the one from high angular resolution imaging of the radio counterpart of GW170817, kN observations are significantly more feasible at the typical distances of such events from current and future LIGO-Virgo collaboration observing runs (D L ∼ 100 Mpc). Our results are insensitive to the assumption of the peculiar velocity of the kN host galaxy. © 2020. The American Astronomical Society
    • …
    corecore