1,553 research outputs found
Integrative machine learning approach for multi-class SCOP protein fold classification
Classification and prediction of protein structure has been a central research theme in structural bioinformatics. Due to the imbalanced distribution of proteins over multi SCOP classification, most discriminative machine learning suffers the well-known ‘False Positives ’ problem when learning over these types of problems. We have devised eKISS, an ensemble machine learning specifically designed to increase the coverage of positive examples when learning under multiclass imbalanced data sets. We have applied eKISS to classify 25 SCOP folds and show that our learning system improved over classical learning methods
Spectral Theory for Networks with Attractive and Repulsive Interactions
There is a wealth of applied problems that can be posed as a dynamical system
defined on a network with both attractive and repulsive interactions. Some
examples include: understanding synchronization properties of nonlinear
oscillator;, the behavior of groups, or cliques, in social networks; the study
of optimal convergence for consensus algorithm; and many other examples.
Frequently the problems involve computing the index of a matrix, i.e. the
number of positive and negative eigenvalues, and the dimension of the kernel.
In this paper we consider one of the most common examples, where the matrix
takes the form of a signed graph Laplacian. We show that the there are
topological constraints on the index of the Laplacian matrix related to the
dimension of a certain homology group. In certain situations, when the homology
group is trivial, the index of the operator is rigid and is determined only by
the topology of the network and is independent of the strengths of the
interactions. In general these constraints give upper and lower bounds on the
number of positive and negative eigenvalues, with the dimension of the homology
group counting the number of eigenvalue crossings. The homology group also
gives a natural decomposition of the dynamics into "fixed" degrees of freedom,
whose index does not depend on the edge-weights, and an orthogonal set of
"free" degrees of freedom, whose index changes as the edge weights change. We
also present some numerical studies of this problem for large random matrices.Comment: 27 pages; 9 Figure
Stable Configurations in Social Networks
We present and analyze a model of opinion formation on an arbitrary network
whose dynamics comes from a global energy function. We study the global and
local minimizers of this energy, which we call stable opinion configurations,
and describe the global minimizers under certain assumptions on the friendship
graph. We show a surprising result that the number of stable configurations is
not necessarily monotone in the strength of connection in the social network,
i.e. the model sometimes supports more stable configurations when the
interpersonal connections are made stronger
Mesh update techniques for free-surface flow solvers using spectral element method
This paper presents a novel mesh-update technique for unsteady free-surface
Newtonian flows using spectral element method and relying on the arbitrary
Lagrangian--Eulerian kinematic description for moving the grid. Selected
results showing compatibility of this mesh-update technique with spectral
element method are given
Three-dimensional flow instability in a lid-driven isosceles triangular cavity
Linear three-dimensional modal instability of steady laminar two-dimensional states developing in a lid-driven cavity of isosceles triangular cross-section is investigated theoretically and experimentally for the case in which the equal sides form a rectangular corner. An asymmetric steady two-dimensional motion is driven by the steady motion of one of the equal sides. If the side moves away from the rectangular corner, a stationary three-dimensional instability is found. If the motion is directed towards the corner, the instability is oscillatory. The respective critical Reynolds numbers are identified both theoretically and experimentally. The neutral curves pertinent to the two configurations and the properties of the respective leading eigenmodes are documented and analogies to instabilities in rectangular lid-driven cavities are discussed
Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions
We examine the effect of accuracy of high-order spectral element methods,
with or without adaptive mesh refinement (AMR), in the context of a classical
configuration of magnetic reconnection in two space dimensions, the so-called
Orszag-Tang vortex made up of a magnetic X-point centered on a stagnation point
of the velocity. A recently developed spectral-element adaptive refinement
incompressible magnetohydrodynamic (MHD) code is applied to simulate this
problem. The MHD solver is explicit, and uses the Elsasser formulation on
high-order elements. It automatically takes advantage of the adaptive grid
mechanics that have been described elsewhere in the fluid context [Rosenberg,
Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)]; the code allows
both statically refined and dynamically refined grids. Tests of the algorithm
using analytic solutions are described, and comparisons of the Orszag-Tang
solutions with pseudo-spectral computations are performed. We demonstrate for
moderate Reynolds numbers that the algorithms using both static and refined
grids reproduce the pseudo--spectral solutions quite well. We show that
low-order truncation--even with a comparable number of global degrees of
freedom--fails to correctly model some strong (sup--norm) quantities in this
problem, even though it satisfies adequately the weak (integrated) balance
diagnostics.Comment: 19 pages, 10 figures, 1 table. Submitted to New Journal of Physic
Compositionality, stochasticity and cooperativity in dynamic models of gene regulation
We present an approach for constructing dynamic models for the simulation of
gene regulatory networks from simple computational elements. Each element is
called a ``gene gate'' and defines an input/output-relationship corresponding
to the binding and production of transcription factors. The proposed reaction
kinetics of the gene gates can be mapped onto stochastic processes and the
standard ode-description. While the ode-approach requires fixing the system's
topology before its correct implementation, expressing them in stochastic
pi-calculus leads to a fully compositional scheme: network elements become
autonomous and only the input/output relationships fix their wiring. The
modularity of our approach allows to pass easily from a basic first-level
description to refined models which capture more details of the biological
system. As an illustrative application we present the stochastic repressilator,
an artificial cellular clock, which oscillates readily without any cooperative
effects.Comment: 15 pages, 8 figures. Accepted by the HFSP journal (13/09/07
On Distributive Subalgebras of Qualitative Spatial and Temporal Calculi
Qualitative calculi play a central role in representing and reasoning about
qualitative spatial and temporal knowledge. This paper studies distributive
subalgebras of qualitative calculi, which are subalgebras in which (weak)
composition distributives over nonempty intersections. It has been proven for
RCC5 and RCC8 that path consistent constraint network over a distributive
subalgebra is always minimal and globally consistent (in the sense of strong
-consistency) in a qualitative sense. The well-known subclass of convex
interval relations provides one such an example of distributive subalgebras.
This paper first gives a characterisation of distributive subalgebras, which
states that the intersection of a set of relations in the subalgebra
is nonempty if and only if the intersection of every two of these relations is
nonempty. We further compute and generate all maximal distributive subalgebras
for Point Algebra, Interval Algebra, RCC5 and RCC8, Cardinal Relation Algebra,
and Rectangle Algebra. Lastly, we establish two nice properties which will play
an important role in efficient reasoning with constraint networks involving a
large number of variables.Comment: Adding proof of Theorem 2 to appendi
- …
