720 research outputs found

    The Set Structure of Precision: Coherent Probabilities on Pre-Dynkin-Systems

    Full text link
    In literature on imprecise probability little attention is paid to the fact that imprecise probabilities are precise on some events. We call these sets system of precision. We show that, under mild assumptions, the system of precision of a lower and upper probability form a so-called (pre-)Dynkin-system. Interestingly, there are several settings, ranging from machine learning on partial data over frequential probability theory to quantum probability theory and decision making under uncertainty, in which a priori the probabilities are only desired to be precise on a specific underlying set system. At the core of all of these settings lies the observation that precise beliefs, probabilities or frequencies on two events do not necessarily imply this precision to hold for the intersection of those events. Here, (pre-)Dynkin-systems have been adopted as systems of precision, too. We show that, under extendability conditions, those pre-Dynkin-systems equipped with probabilities can be embedded into algebras of sets. Surprisingly, the extendability conditions elaborated in a strand of work in quantum physics are equivalent to coherence in the sense of Walley (1991, Statistical reasoning with imprecise probabilities, p. 84). Thus, literature on probabilities on pre-Dynkin-systems gets linked to the literature on imprecise probability. Finally, we spell out a lattice duality which rigorously relates the system of precision to credal sets of probabilities. In particular, we provide a hitherto undescribed, parametrized family of coherent imprecise probabilities

    Stuttering Min oscillations within E. coli bacteria: A stochastic polymerization model

    Full text link
    We have developed a 3D off-lattice stochastic polymerization model to study subcellular oscillation of Min proteins in the bacteria Escherichia coli, and used it to investigate the experimental phenomenon of Min oscillation stuttering. Stuttering was affected by the rate of immediate rebinding of MinE released from depolymerizing filament tips (processivity), protection of depolymerizing filament tips from MinD binding, and fragmentation of MinD filaments due to MinE. Each of processivity, protection, and fragmentation reduces stuttering, speeds oscillations, and reduces MinD filament lengths. Neither processivity or tip-protection were, on their own, sufficient to produce fast stutter-free oscillations. While filament fragmentation could, on its own, lead to fast oscillations with infrequent stuttering; high levels of fragmentation degraded oscillations. The infrequent stuttering observed in standard Min oscillations are consistent with short filaments of MinD, while we expect that mutants that exhibit higher stuttering frequencies will exhibit longer MinD filaments. Increased stuttering rate may be a useful diagnostic to find observable MinD polymerization in experimental conditions.Comment: 21 pages, 7 figures, missing unit for k_f inserte

    Valence and magnetic ordering in intermediate valence compounds : TmSe versus SmB6

    Full text link
    The intermediate valent systems TmSe and SmB6 have been investigated up to 16 and 18 GPa by ac microcalorimetry with a pressure (p) tuning realized in situ at low temperature. For TmSe, the transition from an antiferromagnetic insulator for p<3 GPa to an antiferromagnetic metal at higher pressure has been confirmed. A drastic change in the p variation of the Neel temperature (Tn) is observed at 3 GPa. In the metallic phase (p>3 GPa), Tn is found to increase linearly with p. A similar linear p increase of Tn is observed for the quasitrivalent compound TmS which is at ambiant pressure equivalent to TmSe at p=7 GPa. In the case of SmB6 long range magnetism has been detected above p=8 GPa, i.e. at a pressure slightly higher than the pressure of the insulator to metal transition. However a homogeneous magnetic phase occurs only above 10 GPa. The magnetic and electronic properties are related to the renormalization of the 4f wavefunction either to the divalent or the trivalent configurations. As observed in SmS, long range magnetism in SmB6 occurs already far below the pressure where a trivalent Sm3+ state will be reached. It seems possible, to describe roughly the physical properties of the intermediate valence equilibrium by assuming formulas for the Kondo lattice temperature depending on the valence configuration. Comparison is also made with the appearance of long range magnetism in cerium and ytterbium heavy fermion compounds.Comment: 22 pages including figure

    Flow-driven branching in a frangible porous medium

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Derr, N. J., Fronk, D. C., Weber, C. A., Mahadevan, A., Rycroft, C. H., & Mahadevan, L. Flow-driven branching in a frangible porous medium. Physical Review Letters, 125(15), (2020): 158002, doi:10.1103/PhysRevLett.125.158002.Channel formation and branching is widely seen in physical systems where movement of fluid through a porous structure causes the spatiotemporal evolution of the medium. We provide a simple theoretical framework that embodies this feedback mechanism in a multiphase model for flow through a frangible porous medium with a dynamic permeability. Numerical simulations of the model show the emergence of branched networks whose topology is determined by the geometry of external flow forcing. This allows us to delineate the conditions under which splitting and/or coalescing branched network formation is favored, with potential implications for both understanding and controlling branching in soft frangible media.N. D. was partially supported by the NSF-Simons Center for Mathematical and Statistical Analysis of Biology at Harvard, Grant No. 1764269, and the Harvard Quantitative Biology Initiative. C. H. R. and N. D. were partially supported by the National Science Foundation under Grant No. DMS-1753203. C. H. R. was partially supported by the Applied Mathematics Program of the U.S. DOE Office of Science Advanced Scientific Computing Research under Contract No. DE-AC02-05CH11231. L. M. was partially supported by the National Science Foundation under Grants No. DMR-2011754 and No. DMR-1922321

    Flow-driven branching in a frangible porous medium

    Get PDF
    Channel formation and branching is widely seen in physical systems where movement of fluid through a porous structure causes the spatiotemporal evolution of the medium in response to the flow, in turn causing flow pathways to evolve. We provide a simple theoretical framework that embodies this feedback mechanism in a multi-phase model for flow through a fragile porous medium with a dynamic permeability. Numerical simulations of the model show the emergence of branched networks whose topology is determined by the geometry of external flow forcing. This allows us to delineate the conditions under which splitting and/or coalescing branched network formation is favored, with potential implications for both understanding and controlling branching in soft frangible media.Comment: 5 pages, 4 figures, submitted to Physical Review Letter

    Skutterudite Results Shed Light on Heavy Fermion Physics

    Full text link
    Only few selected examples among the great diversity of anomalous rare earth skutterudite are reviewed. Focus is first given on PrFe4P12 in comparison with URu2Si2. For PrFe4P12, great progress has been made on determining the nature of the order parameter (OP). A non magnetic order parameter with a multipolar component emerges here while for URu2Si2 the nature of the so-called hidden order remains mysterious. The two systems have several similarities in their temperature--pressure (T, P) and magnetic field--temperature (H, T) phase diagrams, in their spin dynamics, in their nesting character and in their high sensitivity to impurities. Advances on one side must stimulate new views on the other. Besides general considerations on the choice of the OP, a simple basic problem is the treatment of the Kondo coupling in a system with low charge carrier number for the cases of uncompensated and compensated semi-metal. An interesting problem is also the possible decoupling between exciton modes and itinerant carriers.Comment: 8 pages, 10 figures, proceedings of International Conference on "New Quantum Phenomena in Skutterudite and Related Systems

    Sociodemographic characteristics and patient and family experience survey response biases

    Get PDF
    Enhancing Patient and Family Experience (PFE) is vital to the delivery of quality healthcare services. Sociodemographic differences affect health outcomes and experiences, but research is limited on biases in PFE survey methodology. We sought to assess survey participation rates across sociodemographic characteristics. This retrospective study analyzed a health system’s ambulatory PFE survey data, collected January 1 – July 31, 2019. Outcomes of interest were rates of survey response, completion, and comments. Predictors included respondent-reported race, ethnicity, language, and measure of social deprivation attached to a respondent’s home address. Addresses were geocoded to census tracts. The tract’s degree of socioeconomic deprivation was defined using the Deprivation Index (DPI). Associations between outcomes and predictors were assessed using the Chi square test. 77,627 unique patient encounters were analyzed. Patients were predominantly White (76%); 5% were Hispanic; and 1% were Spanish-speaking. The overall response, completion, and comment rates were 20.1%, 17.6%, and 4.1%, respectively. There were significant differences across assessed sociodemographic characteristics in response, completion, and comment rates. White patients were most likely to respond, complete, and leave a comment. Spanish-speaking respondents and those living in the most deprived areas were more likely to respond and complete the survey, but less likely to comment than English-speaking respondents and those living in less deprived areas, respectively. PFE survey participation differs across a range of sociodemographic characteristics, potentially introducing noteworthy biases. Health systems should minimize differences in how they collect feedback and account for potential biases when responding to experience data. Experience Framework This article is associated with the Policy & Measurement lens of The Beryl Institute Experience Framework. (https://www.theberylinstitute.org/ExperienceFramework). Access other PXJ articles related to this lens. Access other resources related to this lens

    HIV-1 unmasks the plasticity of innate lymphoid cells [preprint]

    Get PDF
    Pharmaceuticals that suppress HIV-1 viremia preserve CD4+ T cells and prevent AIDS. Nonetheless, HIV-1 infected people taking these drugs have chronic inflammation attributable to persistent disruption of intestinal barrier function with increased rates of cardiovascular mortality. To better understand the etiology of this inflammation we examined the effect of HIV-1 infection on innate lymphoid cells (ILCs). These innate immune counterparts of T cells lack clonotypic antigen receptors, classify according to signature transcription factors and cytokines, and maintain homeostasis in inflamed tissues. ILCs have been defined, in part, by the IL-7Rα, CD127. Here we report that the vast majority of type 1 and 3 ILCs in human adult and placental cord blood are in fact CD127-, as are colon lamina propria ILC1s and many ILC3s. Among ILCs, CD127-ILC1s were the major producer of inflammatory cytokines. In contrast to CD127+ILC3s, CD127-ILC3s did not produce IL-22, a cytokine that maintains epithelial barrier function. In HIV-1+ people taking antivirals that preserve CD4+ T cells, CD127-ILC1s and all homeostatic cytokine-producing CD127+ILCs were decreased in blood and colon. Common γ-chain cytokines that are reported to be elevated in response to HIV-1 infection caused JAK3-dependent downregulation of CD127 and converted CD127-ILC1s into NK cells with heightened cytolytic activity. Consistent with the recent report that human blood CD117+ILCs give rise to both ILC1s and NK cells, pseudotemporal clustering of transcriptomes from thousands of individual cells identified a developmental trajectory from CD127-ILC1s to memory NK cells that was defined by WNT-transcription factor TCF7. WNT inhibition prevented the cytokine-induced transition of CD127-ILC1 cells into memory NK cells. In HIV-1+ people, effector NK cells and TCF7+ memory NK cells were elevated, concomitant with reduction in CD127-ILC1s. These studies describe previously overlooked human ILC subsets that are significant in number and function, identify profound abnormalities in homeostatic ILCs that likely contribute to ongoing inflammation in HIV-1 infection despite control of viremia, provide explanation for increased memory NK cells in HIV-1 infection, and reveal functional plasticity of ILCs

    Search for exchange-antisymmetric two-photon states

    Get PDF
    Atomic two-photon J=0 \leftrightarrowJ'=1 transitions are forbidden for photons of the same energy. This selection rule is related to the fact that photons obey Bose-Einstein statistics. We have searched for small violations of this selection rule by studying transitions in atomic Ba. We set a limit on the probability vv that photons are in exchange-antisymmetric states: v<1.2107v<1.2\cdot10^{-7}.Comment: 5 pages, 4 figures, ReVTeX and .eps. Submitted to Phys. Rev. Lett. Revised version 9/25/9
    corecore