1,310 research outputs found

    The Hyperfine Splitting in Charmonium: Lattice Computations Using the Wilson and Clover Fermion Actions

    Full text link
    We compute the hyperfine splitting mJ/ψmηcm_{J/\psi}-m_{\eta_c} on the lattice, using both the Wilson and O(a)O(a)-improved (clover) actions for quenched quarks. The computations are performed on a 243×4824^3\times48 lattice at β=6.2\beta = 6.2, using the same set of 18 gluon configurations for both fermion actions. We find that the splitting is 1.83\err{13}{15} times larger with the clover action than with the Wilson action, demonstrating the sensitivity of the spin-splitting to the magnetic moment term which is present in the clover action. However, even with the clover action the result is less than half of the physical mass-splitting. We also compute the decay constants fηcf_{\eta_c} and fJ/ψ1f^{-1}_{J/\psi}, both of which are considerably larger when computed using the clover action than with the Wilson action. For example for the ratio fJ/ψ1/fρ1f^{-1}_{J/\psi}/f^{-1}_{\rho} we find 0.32\err{1}{2} with the Wilson action and 0.48±30.48\pm 3 with the clover action (the physical value is 0.44(2)).Comment: LaTeX file, 8 pages and two postscript figures. Southampton Preprint: SHEP 91/92-27 Edinburgh Preprint: 92/51

    The Relationship between the Optical Depth of the 9.7 micron Silicate Absorption Feature and Infrared Differential Extinction in Dense Clouds

    Get PDF
    We have examined the relationship between the optical depth of the 9.7 micron silicate absorption feature (tau_9.7) and the near-infrared color excess, E(J-Ks) in the Serpens, Taurus, IC 5146, Chameleon I, Barnard 59, and Barnard 68 dense clouds/cores. Our data set, based largely on Spitzer IRS spectra, spans E(J-Ks)=0.3 to 10 mag (corresponding to visual extinction between about 2 and 60 mag.). All lines of sight show the 9.7 micron silicate feature. Unlike in the diffuse ISM where a tight linear correlation between the 9.7 micron silicate feature optical depth and the extinction (Av) is observed, we find that the silicate feature in dense clouds does not show a monotonic increase with extinction. Thus, in dense clouds, tau_9.7 is not a good measure of total dust column density. With few exceptions, the measured tau_9.7 values fall well below the diffuse ISM correlation line for E(J-Ks) > 2 mag (Av >12 mag). Grain growth via coagulation is a likely cause of this effect.Comment: 11 pages including 2 figures, 1 table. Accepted for publication in ApJ Letters, 23 July 200

    Secondary gamma-ray production in a coded aperture mask

    Get PDF
    The application of the coded aperture mask to high energy gamma-ray astronomy will provide the capability of locating a cosmic gamma-ray point source with a precision of a few arc-minutes above 20 MeV. Recent tests using a mask in conjunction with drift chamber detectors have shown that the expected point spread function is achieved over an acceptance cone of 25 deg. A telescope employing this technique differs from a conventional telescope only in that the presence of the mask modifies the radiation field in the vicinity of the detection plane. In addition to reducing the primary photon flux incident on the detector by absorption in the mask elements, the mask will also be a secondary radiator of gamma-rays. The various background components in a CAMTRAC (Coded Aperture Mask Track Chamber) telescope are considered. Monte-Carlo calculations are compared with recent measurements obtained using a prototype instrument in a tagged photon beam line

    BATSE Observations of Gamma-Ray Burst Spectra. IV. Time-Resolved High-Energy Spectroscopy

    Get PDF
    We report on the temporal behavior of the high-energy power law continuum component of gamma-ray burst spectra with data obtained by the Burst and Transient Source Experiment. We have selected 126 high fluence and high flux bursts from the beginning of the mission up until the present. Much of the data were obtained with the Large Area Detectors, which have nearly all-sky coverage, excellent sensitivity over two decades of energy and moderate energy resolution, ideal for continuum spectra studies of a large sample of bursts at high time resolution. At least 8 spectra from each burst were fitted with a spectral form that consisted of a low-energy power law, a spectral break at middle energies and a high-energy continuum. In most bursts (122), the high-energy continuum was consistent with a power law. The evolution of the fitted high-energy power-law index over the selected spectra for each burst is inconsistent with a constant for 34% of the total sample. The sample distribution of the average value for the index from each burst is fairly narrow, centered on -2.12. A linear trend in time is ruled out for only 20% of the bursts, with hard-to-soft evolution dominating the sample (100 events). The distribution for the total change in the power-law index over the duration of a burst peaks at the value -0.37, and is characterized by a median absolute deviation of 0.39, arguing that a single physical process is involved. We present analyses of the correlation of the power-law index with time, burst intensity and low-energy time evolution. In general, we confirm the general hard-to-soft spectral evolution observed in the low-energy component of the continuum, while presenting evidence that this evolution is different in nature from that of the rest of the continuum.Comment: 30 pages, with 2 tables and 9 figures To appear in The Astrophysical Journal, April 1, 199

    Operating characteristics of a prototype high energy gamma-ray telescope

    Get PDF
    The field of gamma-ray astronomy in the energy range from ten to several hundred MeV is severely limited by the angular resolution that can be achieved by present instruments. The identification of some of the point sources found by the COS-B mission and the resolution of detailed structure existing in those sources may depend on the development of a new class of instrument. The coded aperture mask telescope, used successfully at X-ray energies hold the promise of being such an instrument. A prototype coded aperture telescope was operated in a tagged photon beam ranging in energy from 23 to 123 MeV. The purpose of the experiment was to demonstrate the feasibility of operating a coded aperture mask telescope in this energy region. Some preliminary results and conclusions drawn from some of the data resulting from this experiment are presented

    Gauge Invariant Smearing and Matrix Correlators using Wilson Fermions at beta=6.2

    Full text link
    We present an investigation of gauge invariant smearing for Wilson fermions on a 243×4824^3 \times 48 lattice at β=6.2\beta = 6.2. We demonstrate a smearing algorithm that allows a substantial improvement in the determination of the baryon spectrum obtained using propagators smeared at both source and sink, at only a small computational cost. We investigate the matrix of correlators constructed from local and smeared operators, and are able to expose excited states of both the mesons and baryons.Comment: at lattice `92. 4 pages latex + 3 postscript figures. Edinburgh preprint: 92/51

    Critical Constraints on Chiral Hierarchies

    Get PDF
    We consider the constraints that critical dynamics places on models with a top quark condensate or strong extended technicolor (ETC). These models require that chiral-symmetry-breaking dynamics at a high energy scale plays a significant role in electroweak symmetry breaking. In order for there to be a large hierarchy between the scale of the high energy dynamics and the weak scale, the high energy theory must have a second order chiral phase transition. If the transition is second order, then close to the transition the theory may be described in terms of a low-energy effective Lagrangian with composite ``Higgs'' scalars. However, scalar theories in which there are more than one Φ4\Phi^4 coupling can have a {\it first order} phase transition instead, due to the Coleman-Weinberg instability. Therefore, top-condensate or strong ETC theories in which the composite scalars have more than one Φ4\Phi^4 coupling cannot always support a large hierarchy. In particular, if the Nambu--Jona-Lasinio model solved in the large-NcN_c limit is a good approximation to the high-energy dynamics, then these models will not produce acceptable electroweak symmetry breaking.Comment: 10 pages, 1 postscript figure (appended), BUHEP-92-35, HUTP-92/A05

    Z -> b\bar{b} Versus Dynamical Electroweak Symmetry Breaking involving the Top Quark

    Full text link
    In models of dynamical electroweak symmetry breaking which sensitively involve the third generation, such as top quark condensation, the effects of the new dynamics can show up experimentally in Z->b\bar{b}. We compare the sensitivity of Z->b\bar{b} and top quark production at the Tevatron to models of the new physics. Z->b\bar{b} is a relatively more sensitive probe to new strongly coupled U(1) gauge bosons, while it is generally less sensitive a probe to new physics involving color octet gauge bosons as is top quark production itself. Nonetheless, to accomodate a significant excess in Z->b\bar{b} requires choosing model parameters that may be ruled out within run I(b) at the Tevatron.Comment: LaTex file, 19 pages + 2 Figs., Fermilab-Pub-94/231-

    Instability in the Molecular Dynamics Step of Hybrid Monte Carlo in Dynamical Fermion Lattice QCD Simulations

    Get PDF
    We investigate instability and reversibility within Hybrid Monte Carlo simulations using a non-perturbatively improved Wilson action. We demonstrate the onset of instability as tolerance parameters and molecular dynamics step sizes are varied. We compare these findings with theoretical expectations and present limits on simulation parameters within which a stable and reversible algorithm is obtained for physically relevant simulations. Results of optimisation experiments with respect to tolerance prarameters are also presented
    corecore