15,121 research outputs found

    Quark fragmentation in the θ\theta-vacuum

    Full text link
    The vacuum of Quantum Chromodynamics is a superposition of degenerate states with different topological numbers that are connected by tunneling (the θ\theta-vacuum). The tunneling events are due to topologically non-trivial configurations of gauge fields (e.g. the instantons) that induce local \p-odd domains in Minkowski space-time. We study the quark fragmentation in this topologically non-trivial QCD background. We find that even though QCD globally conserves \p and \cp symmetries, two new kinds of \p-odd fragmentation functions emerge. They generate interesting dihadron correlations: one is the azimuthal angle correlation cos(ϕ1+ϕ2)\sim \cos(\phi_1 + \phi_2) usually referred to as the Collins effect, and the other is the \p-odd correlation sin(ϕ1+ϕ2)\sim \sin(\phi_1 + \phi_2) that vanishes in the cross section summed over many events, but survives on the event-by-event basis. Using the chiral quark model we estimate the magnitude of these new fragmentation functions. We study their experimental manifestations in dihadron production in e+ee^+e^- collisions, and comment on the applicability of our approach in deep-inelastic scattering, proton-proton and heavy ion collisions.Comment: 4 pages, 2 figure

    Realization of random-field dipolar Ising ferromagnetism in a molecular magnet

    Get PDF
    The longitudinal magnetic susceptibility of single crystals of the molecular magnet Mn12_{12}-acetate obeys a Curie-Weiss law, indicating a transition to a ferromagnetic phase due to dipolar interactions. With increasing magnetic field applied transverse to the easy axis, the transition temperature decreases considerably more rapidly than predicted by mean field theory to a T=0 quantum critical point. Our results are consistent with an effective Hamiltonian for a random-field Ising ferromagnet in a transverse field, where the randomness is induced by an external field applied to Mn12_{12}-acetate crystals that are known to have an intrinsic distribution of locally tilted magnetic easy axes.Comment: 4 pages, 4 figure

    Pair Distribution Function of One-dimensional "Hard Sphere" Fermi and Bose Systems

    Full text link
    The pair distributions of one-dimensional "hard sphere" fermion and boson systems are exactly evaluated by introducing gap variables.Comment: 4 page

    Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non-photon-number-resolving detectors

    Full text link
    We propose a scheme for efficient cluster state quantum computation by using imperfect polarization-entangled photon-pair sources, linear optical elements and inefficient non-photon-number-resolving detectors. The efficiency threshold for loss tolerance in our scheme requires the product of source and detector efficiencies should be >1/2 - the best known figure. This figure applies to uncorrelated loss. We further find that the loss threshold is unaffected by correlated loss in the photon pair source. Our approach sheds new light on efficient linear optical quantum computation with imperfect experimental conditions.Comment: 5 pages, 2 figure

    Magnetic noise around metallic microstructures

    Full text link
    We compute the local spectrum of the magnetic field near a metallic microstructure at finite temperature. Our main focus is on deviations from a plane-layered geometry for which we review the main properties. Arbitrary geometries are handled with the help of numerical calculations based on surface integral equations. The magnetic noise shows a significant polarization anisotropy above flat wires with finite lateral width, in stark contrast to an infinitely wide wire. Within the limits of a two-dimensional setting, our results provide accurate estimates for loss and dephasing rates in so-called `atom chip traps' based on metallic wires. A simple approximation based on the incoherent summation of local current elements gives qualitative agreement with the numerics, but fails to describe current correlations among neighboring objects.Comment: 10 pages, 9 figures, accepted for publication in J Appl Phys; figures plotted for slightly smaller structur

    Nonclassicality of quantum excitation of classical coherent field in photon loss channel

    Get PDF
    We investigate the nonclassicality of photon-added coherent states in the photon loss channel by exploring the entanglement potential and negative Wigner distribution. The total negative probability defined by the absolute value of the integral of the Wigner function over the negative distribution region reduces with the increase of decay time. The total negative probability and the entanglement potential of pure photon-added coherent states exhibit the similar dependence on the beam intensity. The reduce of the total negative probability is consistent with the behavior of entanglement potential for the dissipative single-photon-added coherent state at short decay times.Comment: 5 pages, 5 figures, RevTex4, submitte

    Non-Perturbative Theory of Dispersion Interactions

    Get PDF
    Some open questions exist with fluctuation-induced forces between extended dipoles. Conventional intuition derives from large-separation perturbative approximations to dispersion force theory. Here we present a full non-perturbative theory. In addition we discuss how one can take into account finite dipole size corrections. It is of fundamental value to investigate the limits of validity of the perturbative dispersion force theory.Comment: 9 pages, no figure

    Optically Thin Metallic Films for High-radiative-efficiency Plasmonics

    Get PDF
    Plasmonics enables deep-subwavelength concentration of light and has become important for fundamental studies as well as real-life applications. Two major existing platforms of plasmonics are metallic nanoparticles and metallic films. Metallic nanoparticles allow efficient coupling to far field radiation, yet their synthesis typically leads to poor material quality. Metallic films offer substantially higher quality materials, but their coupling to radiation is typically jeopardized due to the large momentum mismatch with free space. Here, we propose and theoretically investigate optically thin metallic films as an ideal platform for high-radiative-efficiency plasmonics. For far-field scattering, adding a thin high-quality metallic substrate enables a higher quality factor while maintaining the localization and tunability that the nanoparticle provides. For near-field spontaneous emission, a thin metallic substrate, of high quality or not, greatly improves the field overlap between the emitter environment and propagating surface plasmons, enabling high-Purcell (total enhancement > 10410^4), high-quantum-yield (> 50 %) spontaneous emission, even as the gap size vanishes (3\sim5 nm). The enhancement has almost spatially independent efficiency and does not suffer from quenching effects that commonly exist in previous structures.Comment: Supporting Information not included but freely available from DOI:10.1021/acs.nanolett.6b0085

    Theory for Nonlinear Spectroscopy of Vibrational Polaritons

    Full text link
    Molecular polaritons have gained considerable attention due to their potential to control nanoscale molecular processes by harnessing electromagnetic coherence. Although recent experiments with liquid-phase vibrational polaritons have shown great promise for exploiting these effects, significant challenges remain in interpreting their spectroscopic signatures. In this letter, we develop a quantum-mechanical theory of pump-probe spectroscopy for this class of polaritons based on the quantum Langevin equations and the input-output theory. Comparison with recent experimental data shows good agreement upon consideration of the various vibrational anharmonicities that modulate the signals. Finally, a simple and intuitive interpretation of the data based on an effective mode-coupling theory is provided. Our work provides a solid theoretical framework to elucidate nonlinear optical properties of molecular polaritons as well as to analyze further multidimensional spectroscopy experiments on these systems

    Note on Generalized Janus Configurations

    Full text link
    We study several aspects of generalized Janus configuration, which includes a theta term. We investigate the vacuum structure of the theory and find that unlike the Janus configuration without theta term there is no nontrivial vacuum. We also discuss BPS soliton configuration both by supersymmetry analysis and from energy functional. The half BPS configurations could be realized by introducing transverse (p,q)-strings in original brane configuration corresponding to generalized Janus configuration. It turns out the BPS soliton could be taken as modified dyon. We discuss the solution of half BPS equations for the sharp interface case. Moreover we construct less supersymmetric Janus configuration with theta term.Comment: 27 pages; References adde
    corecore