237 research outputs found

    A Semantic Model to Study Neural Organization of Language in Bilingualism

    Get PDF
    A neural network model of object semantic representation is used to simulate learning of new words from a foreign language. The network consists of feature areas, devoted to description of object properties, and a lexical area, devoted to words representation. Neurons in the feature areas are implemented as Wilson-Cowan oscillators, to allow segmentation of different simultaneous objects via gamma-band synchronization. Excitatory synapses among neurons in the feature and lexical areas are learned, during a training phase, via a Hebbian rule. In this work, we first assume that some words in the first language (L1) and the corresponding object representations are initially learned during a preliminary training phase. Subsequently, second-language (L2) words are learned by simultaneously presenting the new word together with the L1 one. A competitive mechanism between the two words is also implemented by the use of inhibitory interneurons. Simulations show that, after a weak training, the L2 word allows retrieval of the object properties but requires engagement of the first language. Conversely, after a prolonged training, the L2 word becomes able to retrieve object per se. In this case, a conflict between words can occur, requiring a higher-level decision mechanism

    Logistical gazes: Introduction to a special issue of Work Organisation, Labour and Globalisation

    Get PDF
    This article introduces this special issue of Work Organisation, Labour and Globalisation on logistics. First of all, it furnishes a brief genealogy of logistics in the modern era. Then, it frames some of the main issues in current critical debates on logistics. Finally, it presents the contents of the special issue in detail, connecting them with more general attempts to develop a 'logistical gaze' as a methodological perspective on the different and multiple transformations of contemporary capitalism

    Maternal dietary loads of alpha-tocopherol increase synapse density and glial synaptic coverage in the hippocampus of adult offspring

    Get PDF
    An increased intake of the antioxidant α- Tocopherol (vitamin E) is recommended in complicated pregnancies, to prevent free radical damage to mother and fetus. However, the anti-PKC and antimitotic activity of α- Tocopherol raises concerns about its potential effects on brain development. Recently, we found that maternal dietary loads of α- Tocopherol through pregnancy and lactation cause developmental deficit in hippocampal synaptic plasticity in rat offspring. The defect persisted into adulthood, with behavioral alterations in hippocampus-dependent learning. Here, using the same rat model of maternal supplementation, ultrastructural morphometric studies were carried out to provide mechanistic interpretation to such a functional impairment in adult offspring by the occurrence of long-term changes in density and morphological features of hippocampal synapses. Higher density of axo-spinous synapses was found in CA1 stratum radiatum of α- Tocopherol-exposed rats compared to controls, pointing to a reduced synapse pruning. No morphometric changes were found in synaptic ultrastructural features, i.e., perimeter of axon terminals, length of synaptic specializations, extension of bouton-spine contact. Gliasynapse anatomical relationship was also affected. Heavier astrocytic coverage of synapses was observed in Tocopherol-treated offspring, notably surrounding axon terminals; moreover, the percentage of synapses contacted by astrocytic endfeet at bouton-spine interface (tripartite synapses) was increased. These findings indicate that gestational and neonatal exposure to supranutritional Tocopherol intake can result in anatomical changes of offspring hippocampus that last through adulthood. These include a surplus of axo-spinous synapses and an aberrant gliasynapse relationship, which may represent the morphological signature of previously described alterations in synaptic plasticity and hippocampus-dependent learning. © S. Salucci et al., 2014

    Factors associated with shunt dynamic in patients with cryptogenic stroke and patent foramen ovale: an observational cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As previously reported there is evidence for a reduction in right to left shunt (RLS) in stroke patients with patent foramen ovale (PFO). This occurs predominantly in patients with cryptogenic stroke (CS). We therefore analysed factors associated with a shunt reduction on follow-up in stroke patients suffering of CS.</p> <p>Methods</p> <p>On index event PFO and RLS were proven by transesophageal echocardiography and contrast-enhanced transcranial Doppler-sonography (ce-TCD). Silent PE was proved by ventilation perfusion scintigraphy (V/Q) within the stroke work-up on index event; all scans were re-evaluated in a blinded manner by two experts. The RLS was re-assessed on follow-up by ce-TCD. A reduction in shunt volume was defined as a difference of ≥20 microembolic signals (MES) or the lack of evidence of RLS on follow-up. For subsequent analyses patients with CS were considered; parameters such as deep vein thrombosis (DVT) and silent pulmonary embolism (PE) were analysed.</p> <p>Results</p> <p>In 39 PFO patients suffering of a CS the RLS was re-assessed on follow-up. In all patients (n = 39) with CS a V/Q was performed; the median age was 40 years, 24 (61.5%) patients were female. In 27 patients a reduction in RLS was evident. Silent PE was evident in 18/39 patients (46.2%). Factors such as atrial septum aneurysm, DVT or even silent PE were not associated with RLS dynamics. A greater time delay from index event to follow-up assessment was associated with a decrease in shunt volume (median 12 vs. 6 months, <it>p </it>= 0.013).</p> <p>Conclusions</p> <p>In patients with CS a reduction in RLS is not associated with the presence of a venous embolic event such as DVT or silent PE. A greater time delay between the initial and the follow-up investigation increases the likelihood for the detection of a reduction in RLS.</p

    Is fluorescein-guided technique able to help in resection of high-grade gliomas?

    Get PDF
    OBJECT: Fluorescein, a dye that is widely used as a fluorescent tracer, accumulates in cerebral areas where the blood-brain barrier is damaged. This quality makes it an ideal dye for the intraoperative visualization of high-grade gliomas (HGGs). The authors report their experience with a new fluorescein-guided technique for the resection of HGGs using a dedicated filter on the surgical microscope. METHODS: The authors initiated a prospective Phase II trial (FLUOGLIO) in September 2011 with the objective of evaluating the safety of fluorescein-guided surgery for HGGs and obtaining preliminary evidence regarding its efficacy for this purpose. To be eligible for participation in the study, a patient had to have suspected HGG amenable to complete resection of the contrast-enhancing area. The present report is based on the analysis of the short- and long-term results in 20 consecutive patients with HGGs (age range 45-74 years), enrolled in the study since September 2011. In all cases fluorescein (5-10 mg/kg) was injected intravenously after intubation. Tumor resection was performed with microsurgical technique and fluorescence visualization by means of BLUE 400 or YELLOW 560 filters on a Pentero microscope. RESULTS: The median preoperative tumor volume was 30.3 cm(3) (range 2.4-87.8 cm(3)). There were no adverse reactions related to fluorescein administration. Complete removal of contrast-enhanced tumor was achieved in 80% of the patients. The median duration of follow-up was 10 months. The 6-months progression-free survival rate was 71.4% and the median survival was 11 months. CONCLUSIONS: Analysis of these 20 cases suggested that fluorescein-guided technique with a dedicated filter on the surgical microscope is safe and allows a high rate of complete resection of contrast-enhanced tumor as determined on early postoperative MRI. Clinical trial registration no.: 2011-002527-18 (EudraCT)

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore