38 research outputs found

    Examination of effects of GSK3β phosphorylation, β-catenin phosphorylation, and β-catenin degradation on kinetics of Wnt signaling pathway using computational method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent experiments have explored effects of activities of kinases other than the well-studied GSK3β, in wnt pathway signaling, particularly at the level of β-catenin. It has also been found that the kinase PKA attenuates β-catenin degradation. However, the effects of these kinases on the level and degradation of β-catenin and the resulting downstream transcription activity remain to be clarified. Furthermore, the effect of GSK3β phosphorylation on the β-catenin level has not been examined computationally. In the present study, the effects of phosphorylation of GSK3β and of phosphorylations and degradation of β-catenin on the kinetics of the wnt signaling pathway were examined computationally.</p> <p>Methods</p> <p>The well-known computational Lee-Heinrich kinetic model of the wnt pathway was modified to include these effects. The rate laws of reactions in the modified model were solved numerically to examine these effects on β-catenin level.</p> <p>Results</p> <p>The computations showed that the β-catenin level is almost linearly proportional to the phosphorylation activity of GSK3β. The dependence of β-catenin level on the phosphorylation and degradation of free β-catenin and downstream TCF activity can be analyzed with an approximate, simple function of kinetic parameters for added reaction steps associated with effects examined, rationalizing the experimental results.</p> <p>Conclusion</p> <p>The phosphorylations of β-catenin by kinases other than GSK3β involve free unphorphorylated β-catenin rather than GSK3β-phosphorylated β-catenin*. In order to account for the observed enhancement of TCF activity, the β-catenin dephosphorylation step is essential, and the kinetic parameters of β-catenin phosphorylation and degradation need to meet a condition described in the main text. These findings should be useful for future experiments.</p

    Inhibition of GSK3 Phosphorylation of β-Catenin via Phosphorylated PPPSPXS Motifs of Wnt Coreceptor LRP6

    Get PDF
    The Wnt/β-catenin signaling pathway plays essential roles in cell proliferation and differentiation, and deregulated β-catenin protein levels lead to many types of human cancers. On activation by Wnt, the Wnt co-receptor LDL receptor related protein 6 (LRP6) is phosphorylated at multiple conserved intracellular PPPSPXS motifs by glycogen synthase kinase 3 (GSK3) and casein kinase 1 (CK1), resulting in recruitment of the scaffolding protein Axin to LRP6. As a result, β-catenin phosphorylation by GSK3 is inhibited and β-catenin protein is stabilized. However, how LRP6 phosphorylation and the ensuing LRP6-Axin interaction lead to the inhibition of β-catenin phosphorylation by GSK3 is not fully understood. In this study, we reconstituted Axin-dependent β-catenin phosphorylation by GSK3 and CK1 in vitro using recombinant proteins, and found that the phosphorylated PPPSPXS peptides directly inhibit β-catenin phosphorylation by GSK3 in a sequence and phosphorylation-dependent manner. This inhibitory effect of phosphorylated PPPSPXS motifs is direct and specific for GSK3 phosphorylation of β-catenin at Ser33/Ser37/Thr41 but not for CK1 phosphorylation of β-catenin at Ser45, and is independent of Axin function. We also show that a phosphorylated PPPSPXS peptide is able to activate Wnt/β-catenin signaling and to induce axis duplication in Xenopus embryos, presumably by inhibition of GSK3 in vivo. Based on these observations, we propose a working model that Axin recruitment to the phosphorylated LRP6 places GSK3 in the vicinity of multiple phosphorylated PPPSPXS motifs, which directly inhibit GSK3 phosphorylation of β-catenin. This model provides a possible mechanism to account, in part, for inhibition of β-catenin phosphorylation by Wnt-activated LRP6

    A biochemical screen for identification of small-molecule regulators of the Wnt pathway using Xenopus egg extracts

    No full text
    Misregulation of the Wnt pathway has been shown to be responsible for a variety of human diseases, most notably cancers. Screens for inhibitors of this pathway have been performed almost exclusively using cultured mammalian cells or with purified proteins. We have previously developed a biochemical assay using Xenopus egg extracts to recapitulate key cytoplasmic events in the Wnt pathway. Using this biochemical system, we show that a recombinant form of the Wnt coreceptor, LRP6, regulates the stability of two key components of the Wnt pathway (β-catenin and Axin) in opposing fashion. We have now fused β-catenin and Axin to firefly and Renilla luciferase, respectively, and demonstrate that the fusion proteins behave similarly as their wild-type counterparts. Using this dual luciferase readout, we adapted the Xenopus extracts system for high-throughput screening. Results from these screens demonstrate signal distribution curves that reflect the complexity of the library screened. Of several compounds identified as cytoplasmic modulators of the Wnt pathway, one was further validated as a bona fide inhibitor of the Wnt pathway in cultured mammalian cells and Xenopus embryos. We show that other embryonic pathways may be amendable to screening for inhibitors/modulators in Xenopus egg extracts

    LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of β-catenin

    No full text
    Wnt/β-catenin signaling controls various cell fates in metazoan development and is misregulated in several cancers and developmental disorders. Binding of a Wnt ligand to its transmembrane coreceptors inhibits phosphorylation and degradation of the transcriptional coactivator β-catenin, which then translocates to the nucleus to regulate target gene expression. To understand how Wnt signaling prevents β-catenin degradation, we focused on the Wnt coreceptor low-density lipoprotein receptor-related protein 6 (LRP6), which is required for signal transduction and is sufficient to activate Wnt signaling when overexpressed. LRP6 has been proposed to stabilize β-catenin by stimulating degradation of Axin, a scaffold protein required for β-catenin degradation. In certain systems, however, Wnt-mediated Axin turnover is not detected until after β-catenin has been stabilized. Thus, LRP6 may also signal through a mechanism distinct from Axin degradation. To establish a biochemically tractable system to test this hypothesis, we expressed and purified the LRP6 intracellular domain from bacteria and show that it promotes β-catenin stabilization and Axin degradation in Xenopus egg extract. Using an Axin mutant that does not degrade in response to LRP6, we demonstrate that LRP6 can stabilize β-catenin in the absence of Axin turnover. Through experiments in egg extract and reconstitution with purified proteins, we identify a mechanism whereby LRP6 stabilizes β-catenin independently of Axin degradation by directly inhibiting GSK3's phosphorylation of β-catenin

    A Biochemical Screen for Identification of Small-Molecule Regulators of the Wnt Pathway Using Xenopus

    No full text
    Misregulation of the Wnt pathway has been shown to be responsible for a variety of human diseases, most notably cancers. Screens for inhibitors of this pathway have been performed almost exclusively using cultured mammalian cells or with purified proteins. We have previously developed a biochemical assay using Xenopus egg extracts to recapitulate key cytoplasmic events in the Wnt pathway. Using this biochemical system, we show that a recombinant form of the Wnt coreceptor, LRP6, regulates the stability of two key components of the Wnt pathway (β-catenin and Axin) in opposing fashion. We have now fused β-catenin and Axin to firefly and Renilla luciferase, respectively, and demonstrate that the fusion proteins behave similarly as their wild-type counterparts. Using this dual luciferase readout, we adapted the Xenopus extracts system for high-throughput screening. Results from these screens demonstrate signal distribution curves that reflect the complexity of the library screened. Of several compounds identified as cytoplasmic modulators of the Wnt pathway, one was further validated as a bona fide inhibitor of the Wnt pathway in cultured mammalian cells and Xenopus embryos. We show that other embryonic pathways may be amendable to screening for inhibitors/modulators in Xenopus egg extracts
    corecore