3,893 research outputs found

    Investigation to define the propagation characteristics of a finite amplitude acoustic pressure wave Final report

    Get PDF
    Aerodynamic noise generation by finite amplitude pressure wave propagation through entropy producing region

    Investigation to define the propagation characteristics of a finite amplitude acoustic pressure wave

    Get PDF
    A theoretical analysis of the propagation characteristics of a finite amplitude pressure wave is presented. The analysis attempts to study the contribution of entropy-producing regions to the mechanism of aerodynamic noise generation. It results in a nonlinear convective wave equation in terms of entropy and a thermodynamic 'J' function. A direct analogy between the derived governing equation and those used in classical literature is obtained. An idealization of the processes considered permits the uncoupling of the equations of motion with a consequent construction of an acoustic analogy treating shock wave emission of finite amplitude acoustic waves. An engineering approach is reflected in the concept of an extended plug nozzle whose function is to facilitate aerodynamic noise attenuation by modifying the entropy-producing regions

    Differential chemical abundance analysis of a 47 Tuc AGB star with respect to Arcturus

    Full text link
    This study resolves a discrepancy in the abundance of Zr in the 47 Tucanae asymptotic giant branch star Lee 2525. This star was observed using the echelle spectrograph on the 2.3 m telescope at Siding Spring Observatory. The analysis was undertaken by calibrating Lee 2525 with respect to the standard giant star Arcturus. This work emphasises the importance of using a standard star with stellar parameters comparable to the star under analysis rather than a calibration with respect to the Sun (Koch & McWilliam 2008). Systematic errors in the analysis process are then minimised due to the similarity in atmospheric structure between the standard and programme stars. The abundances derived for Lee 2525 were found to be in general agreement with the Brown & Wallerstein (1992) values except for Zr. In this study Zr has a similar enhancement ([Zr/Fe] = +0.51 dex) to another light s-process element, Y ([Y/Fe] = +0.53 dex), which reflects current theory regarding the enrichment of s-process elements by nuclear processes within AGB stars (Busso et al. 2001). This is contrary to the results of Brown & Wallerstein (1992) where Zr was under-abundant ([Zr/Fe] = +0.51 dex) and Y was over-abundant ([Y/Fe] = +0.50 dex) with respect to Fe.Comment: 11 pages, 5 figures Accepted for publication in MNRA

    Poplar borer, Saperda calcarata Say, in interior British Columbia

    Get PDF
    n/

    How ambiguous is an audio-visual impact?

    Get PDF
    When two similarly sized white disks are seen to move toward each other, coincide and then move apart, the usual perception is to see the figures as passing despite the perception of an impact being equally plausible. However, if a brief sound is presented at the moment of coincidence this perception is reversed and the objects are seen to collide. Most interpretations of this observation emphasise the role of sound in disambiguating the visual stimulus however the sound induced bounce effect occurs even when the objects unambiguously pass by each other (as for example when one is a disk and the other a square). We will report a series of experiments in which we varied a number of characteristics of the visual stimuli without removing the effect of the sound. It appears that the saliency of a sound is paramount in the perception of an audio-visual impact event

    A whole-bark method of rearing Dryocoetes Confusus SW.

    Get PDF
    n/

    Ab initio parametrised model of strain-dependent solubility of H in alpha-iron

    Full text link
    The calculated effects of interstitial hydrogen on the elastic properties of alpha-iron from our earlier work are used to describe the H interactions with homogeneous strain fields using ab initio methods. In particular we calculate the H solublility in Fe subject to hydrostatic, uniaxial, and shear strain. For comparison, these interactions are parametrised successfully using a simple model with parameters entirely derived from ab initio methods. The results are used to predict the solubility of H in spatially-varying elastic strain fields, representative of realistic dislocations outside their core. We find a strong directional dependence of the H-dislocation interaction, leading to strong attraction of H by the axial strain components of edge dislocations and by screw dislocations oriented along the critical slip direction. We further find a H concentration enhancement around dislocation cores, consistent with experimental observations.Comment: part 2/2 from splitting of 1009.3784 (first part was 1102.0187), minor changes from previous version
    corecore