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SUMMARY

A theoretical analysis of the propagation characteristics of a finite
amplitude pressure wave is presented in the following sections.

The analysis attempts to study the contribution of entropy-producing
regions to the mechanism of aerodynamic noise generation. It results in a
non-linear convective wave equation in terms of entropy and a thermodynamic
J function. A direct analogy between the derived governing equation and
those used in classical literature is obtained. An idealization of the
processes considered permits the uncoupling of the equations of motion
with a consequent construction of an acoustic analogy treating shock wave
emission of finite amplitude acoustic waves.

An engineering approach of this analogy is reflected in the concept
of an extended plug nozzle whose function it is to facilitate aerodynamic

noise attenuation by modifying the entropy-producing regions.
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I. BASIC THEOQRY

1. INTRODUCTION

This theoretical analysis of the propagation characteristics of a
finite amplitude pressure wave has been concerned with the contribution of
entropy-producing regions to the mechanism of aerodynamic noise generation
in the exhaust of a supersonic nozzle. It is hoped that the present approach
will tend to supplement some aspects of the contemporary investigations on
the subject of aerodynamic noise generation.

A first attempt to investigate the feasibility of aerodynamic noise
attenuation by modifying the geometry of entropy-producing regions (in this
particular case, shock waves) resulted in the concept of an extended plug
nozzle (Peter and Kamo, 1963). The present analysis attempts to put these
early ideas on a more rigorous basis by considering non-isentropic processes
coupled with the equations of motion of fluid dynamics.

The analysis results in a nonlinear convective wave equation in terms of
entropy and a thermodynamic J-function. A non-isentropic propagation
speed o is defined and expressed in terms of the entropy function. This
propagation speed reduces to the isentropic speed of sound as the entropy
production in the process tends to zero. A proper choice of the thermo-
dynamic J-function allows a direct analogy between the derived governing
equation and those used in classical Titerature (Lighthill, 1952, Phillips,
1960, Ribner, 1954-62) when the entropy terms are assumed small. The

equations of motion are simplified and uncoupled by idealizing the process



to consist of straight lines in the J-S plane, each referring to a
different region in space. This idealization implies a far field noise
analysis since near field effects admit of mixed J-S processes taking
place.

It is also shown that, within the framework of this analysis, the
pressure, density and temperature functions depend on the history of the
process rather than the instantaneous states of the fluid particles. It
appears, also, that, whereas all functional values of the thermodynamic
variables (e.g., p, o, T, etc.) are continuous on the boundary of a non-
isentropic region (adjoining an isentropic region) their derivatives are not.
The non-isentropic propagation speed o differs from its isentropic counter-
part, at the end of the non-isentropic process, by a factor which is close,
but not equal to, unity. This factor depends directly upon the amount of
entropy produced during the process and tends to unity as the entropy pro-
duction tends to zero. Moreover, it also appears that, even though the
entropy variation for weak shocks is of a third order of magnitude, the
effects of entropy production cannot be disregarded since, in the governing
differential equation, entropy effects are of a first-order magnitude due

to an additional factor appearing in the analysis.

?. THE NON-ISENTROPIC CONVECTED WAVE EQUATION

In the proceeding analysis it is assumed that a perfect gas satisfying
the equation of state
forms a region of entropy production. In a fixed Cartesian Reference Frame

the following equations of motion describe the flow characteristics
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The following notation {s used
p = density of the fluid
P = pressure of the fluid
T = temperature of the fluid
u; = velocity vector
S = entropy
u = viscosity coefficient
k = heat transfer coefficient
Fo = body forces vector
Q = heat sources
R = gas constant
¢ = dissipation function
T viscous part of the stress tensor
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In terms of the above notation the following subsidiary relations are needed:



\
~N
=
)
AN ]
=
™
N
=
o
~
a

iy i3

with
au u -
E.,=% 3—-;{;+-3-_L
A f xj X
Gij = Kronecker delta

Since the analysis of entropy-producing regions implies a strong
coupling between the mechanical conditions (momentum equation) and thermo-
dynamic conditions (energy equation), it will be useful to put the momentum
equation in terms of thermodynamic variables. To do so we first take the

divergence of the momentum Equation (2.3) to obtain

D M, o [1ap ). s 1_a_(T,.)]-i‘.L M, g
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Let J be a thermodynamic variable (to be defined at a later stage)
and consider the pressure to be a function of density and the variable J.
Under these conditions the pressure differential may be written in the form

N 3
dp = [-55-]] dp + {-a-g]pd_] (2.6)




We next define a quantity o having the dimensions of velocity and

given by

VA )
o = [SE)J (2.7)

Under these conditions the pressure gradient term in Equation (2.5) may be

written as
1 3p 2 3 |, (e ] 1 [ep) @]
- zZ Q —— wmi—— + - - (208)
In view of relations (2.2) and {2.8), Equation (2.5) takes on the following
form
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Now let us consider the entropy function. To simplify the derivation,

a calorically perfect gas will be assumed to yield

zn[L] -1 Kn[P——] - f_— (2.10)

where e, and cp are the specific heats of the gas and y is their ratio.
A function G will now be defined in such a manner that

gy zn[%a) (2.11)

Under these conditions, Relation (2.70) becomes simply:
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In using Relation (2.72) in Equation (2.9) the thermodynamic variables
S and J will be regarded as independent variables. As mentioned previously,
the thermodynamic variable J will be defined later. Before using Relation
(2.12) in the differential equation (2.9), it will be convenient to note the
form of the derivatives of Equation (2.72}. In accordance with the above

hypothesis we have
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Hence, taking the first and second differentials of Equation (2.72), the

following relations are obtained
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Consider next the differential Equation (2.9) and write it in the

following form:




From Equations (2.73) and (2.74) the last equation may be written as
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Collecting terms in the above equation, the following relation is

obtained:

(2.15)
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To simplify the notation we introduce two functions H and K given

by:

H = [1 ; [%SQJJ] ; K= - [%?]s (2.17)

and write the last expression of Equation (2.76) in the form
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In view of Equations (2.17) and (2.78), Equation (2.76) becomes
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Simp1ifying the above, the following differential equation is obtained:
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Equation (2.79) represents a nonlinear convective wave equation in
terms of the two thermodynamic variables S and J. It implies that, in a
non-isentropic region, entropy changes are propagated convectively within
the region. The source distribution is represented by the right-hand side
of Equation (2.79) and is shown to depend upon the nature of the thermodynamic
variable J and also upon the last two terms of the equation representing
the effects of viscosity, body forces and velocity fluctuations. The shape

of the characteristics is directly a function of the propagation speed
az = [22] (2.20)
J

Formally, this propagation speed depends directly upon the entropy
state of the fluid particles and also upon the process J = constant. Through
these two thermodynamic variables it is a function of the space variables
X and the time . In addition, the form of the equation indicates
dissipative processes due to the appearance of first derivatives both in
space and time and also due to the highly nonlinear character of the pro-
cesses involved. This is reflected by the non-linearity of the equation
since all coefficients on the left of the above equation are functions of
entropy, i.e., of the dependent variable (except the coefficient of the
second time derivative which has been incorporated in the forcing function

on the right-hand side by suitable division).

3. THE THERMODYNAMIC VARIABLE J
Equation (2.79) governing the flow in non-isentropic regions admits
two independent thermodynamic variables, namely, the entropy S and the

variable J which, so far, is of an arbitrary character. The remaining

-10-




variables, whose mathematical forms are sought in the present investigation,
e.g., the pressure p, the density p, etc., are functions of the space
coordinates xi(i = 1,2,3) and the time %, through these two independent
variables. To obtain an analytically meaningful result from the previous
derivation, the thermodynamic variable J must be uniquely determined. Now,
it appears that the unique determination of this variable cannot be achieved
from purely mathematical or thermodynamic considerations, since within the
framework of these two sciences the variable J need not be specified
to obtain the equation represented by Relation (2.19). This is amply
demonstrated by the process of the previous analysis resulting in the actual
derivation of the governing equation without recourse to any hypothesis con-
cerning the character of the J function.

To specify the form of the thermodynamic J-function it is necessary
to scrutinize some physical aspects of the present derivation. Thus, if
n = nl(S,J) is a given thermodynamic variable, its differential may be

written in the form:

dn

[%]s dJ + [-%]st (3.1)

The coefficient of dJ in Equation (3.7)represents an isentropic process
with J varying, whereas that of dS reflects entropy variations during
a J = constant process. It is apparent that in the case of an entropy-
producing region the contribution of the J = constant process must
predominate.

The choice of the dimensional units for the J function is completely
arbitrary insofar as keeping the process J = constant an invariant. For

such a dimensional change may be effectively accomplished by adjoining

-11-



to the differential dJ arbitrary factors, without affecting the J = constant
process. In the present case when non-isentropic pressure variations are
considered, the simplest form will be obtained by ascribing to the variable
J the dimensions of pressure.

Dimensional considerations indicate that the function:

- g? - pdp | _
dJ = 8 [dD F ] dp (3,2)

where B is a constant parameter having the dimensions of velocity fulfills
this requirement.* For the present, the form of the J function as given
in Equation (3.2) will be regarded as a definition.

It is now necessary to obtain some useful thermodynamic relations
satisfied by the thermodynamic variable J. Since the definition of entropy
of a perfect gas yields the equation:

as _dp _ _do
¢, P Yo

the combination of Equation (3.2) with the above relation yields:

2 2
dJ = - (Bl_ o ds - dp; dJ =z - E—— p + E—— ds - m dp (3.3)
P Cp CU p

Hence, we obtain the three relations:

2
3] 1. aJ . _ B . 3 . _ B
Boor Bt @t e

* See Concluding Remarks
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From the last two equations it follows that:

[%Jp - [%]J (3.5)

Likewise, from Relation (3.2) one gets

Fﬂq - L (3.6)
J L

But, from the definition of the non-isentropic propagation speed o (Equation

(2.7}) given by
ol = |22
BpJ

it follows, using Equation (3.6) and routine thermodynamic relations, that

i‘O

T
A

<

1
. (3.7)
o

for a J = constant process.

Equation (3.7) indicates that the parameter BZ tends to infinity as
the process under consideration approaches an isentropic process in the limit.
This property will be confirmed in subsequent derivations by actually defining
the parameter g8 in terms of boundary values.

Again using the definition of the J function in Equation (3.2) the

following relation holds

! 1 d
= + (3-8)
a7 B? ;7 a§



Hence, using the first of Equation (3.4) it follows that

RS
s
or, using Relation (3.7)
[30] .- B
_373 YP

1
i
o

In a similar manner one deduces from Equation (3.§) that

Consider the function

= - Py .
G Cv Zn[po] ;

Combining the two it follows that

dG - - v [%EJJ ds - ¥

T

This last relation implies that

Fﬁ% ; 8% .
BSJ Yp !

Consider next the second of Equations (3.3)given by

dG =

-14-
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3G
3T

(3.9)

(3.10)

G and its differential as defined in Equation (2.77):

Jyo e

(3.11)

(3.12)
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Using Equation (3.7) it follows that

2
dJ = %%05 %de (3.14)
o

2
Sl REE-- -

It will also be useful to consider the pressure as a function of
density and the J-variable and subsequently let the density be a function of
J and S [this procedure was used to obtain the governing differential
Equation (2.79)]. A routine comparison of coefficients by invoking linear

independence yields the relations:

éﬂ] :Pzz‘ [zo_] 316
[asj 30); 134 (3.1¢a
or
i’P—] - [3—"] (3.16b
[as P S

In a similar manner

[%L}]s i {%E]J {%]s * [%?J (3.17a
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or

]S - [%3}3 ; [gg] (3. 17b)

and these may be easily verified by the use of Table I.
If we now consider the J-function definition and the combined first
and second law equation of thermodynamics, the following relation is

obtained:

2
[ [T-——B]ds-ch (3.15)
o < )

Equation (3.78) results in the following relations:

7 2
3J) . AT _ 1 _ B . (3] . _ B
), - - o (a—ﬁ]f—p[” —p] [ﬁ]r"’[ cp] 57

Some of the above relations which may be useful for subsequent derivations

n

are collected in Table I.

-16-
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4. COMPARISON WITH EXISTING THEORIES

The derivation of the governing equation in terms of two thermodynamic
variables S and J and the subsequent definition of the J-function as
presented in Sections 2 and 3 respectively, makes it possible to compare the
derived equation with those of existing theories and show their equivalence.

Let us consider Equation (2.19) which was shown to be

2
D°S 2.2 D TS 2 3 2,,] aS
‘D?' - a VS + D—‘ (.?,VL H) D—, - o —axL [ﬂn(a H,] —ax ]

"
= =
Nlt)
L
!
Cr
+
~ts

¢ 5 1 9 auy u;
+ 3%, Ea_zjf[w]*ﬂ W, W (4.7]

The functions H and K were defined in Equation (2.17) and were given by:

H = 1+[ﬁ] ) /<=-(39-) (4.2)
( S J oJ S
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However, from the relations involving the J-function in Table 1 we infer
that
1

Z [ 0 } cv
= t =0 K=-— 4.3
H B Ef' Y 2 ( )

Moreover, from Equation (3.8) these may be written:

n

Bz ; v
H-_-a'7 K:-F (4.4)

Using these values of H and K in Equation (4.1), the following form is

obtained:
o%s _ 272 D 2, DS
th O.VS'DZ(KVLG)DZ— =

2
Z 3 a Yo 93 (a dJ
- ot = () 4 =) ] T +
2%, [ (p ;@ 3%, 'p )
d b ] U . JuU.
*‘5“2{%[1‘%(%'”&'\ Hi‘ii} (4.5)
8 Xe LP X\ Y /J £ %%y

We can now divide this Equation by o noting that:
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Finally, the coefficient of the gradient of the J-function may be

written:

?
— “—) P X 2 4.8

Q
'o| S
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2
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A
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Hence, Equation (4.7) becomes:

D[IDS]_V23=_CU D[]_DJ]__B_ 1+[33) ol a3 s
23 A ET T |p TX 3x; 3G/ 4| P o
c U, au,
2 1a | - £ L
R VR BT B

Equation (4.9) represents the final form of Equation (2.19), using the
thermodynamic J function as defined in Equation (3.2). It may be looked
upon as a convected nonlinear wave equation in a non-isentropic region in
which the forcing function is represented by the right-hand side of the
equation.

Alternately, in a formal manner, one could look upon Equation (4.9) as
a convected wave equation in a region in which the J function is propagated,
its forcing function being given by entropy generatibn, viscous effects,
body forces and velocity fluctuation. In this case it is convenient to write

Equation (4.9) in the alternate form:

]
NS
|-
S
+
[«
x|l
d
r——
—
+
g &
-
—
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A O g
n
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The last form of the equation is useful when a non-isentropic region is
imbedded within a Targer region of quiescent fluid. This is obviously the
case when a large amplitude pressure wave is propagated into a quiescent
space by highly disturbed non-isentropic flow including moderate shock waves.
In this case the right-hand side of Equation (4.10) represents the non-
isentropic forcing function.

In the case when the J-wave propagated by Equation (4.10) is generated
by isentropic processes, the entropy derivatives vanish from the equation.
Also, the J-function varies as the negative pressure function since it was

shown that*:

3]
ot = - Al
[3'9)3 1 (4.11)

It will also be shown that, for constant entropy, the propagation speed az

becomes the speed of sound az in the limit.

Under these assumptions, Equation (4.10) takes the following form:

BLL/L» au 3 1 3
v, o e | ew; (W] TR (4.12)
i % 728 B B

*Refer to Table 1.
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Equation (4.12) is the differential equation derived by Phillips
(Phillips, 1960) with the entropy terms deleted. Lighthill's form of
Equation may be obtained by using isentropic relations between the
pressure and density functions (Phillips, 1960, also Ribner, 1962).

This derivation indicates the equivalence of Equation (2.19) to the
forms used in classical investigations of the aerodynamic noise problem.
It should be noted, however, that this equivalence holds true only when
isentropic pressure variations are postulated, as it is in the case of most
ciassical investigations. The present analysis which is aimed at an
investigation of entropy-producing regions with the inclusion of moderate
shock waves and their contribution to aerodynamic sound generation, puts
the emphasis on the dissipative terms of the equation. It assumes those
terms to be the main contribution to the forcing function of the wave

equation causing the propagation of a finite amplitude pressure wave.
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5. SOME ADDITIONAL ASPECTS OF THE GOVERNING EQUATION

The form of Equation (4.70) obtained in the preceding section makes it
apparent that one of the focal points of this analysis is the choice of the
form of the thermodynamic J-function, which allows one to draw an analogy
between the general form of the derived equation with those used in classical
studies of the aerodynamic noise problem. Moreover, it has been shown this
analogy exists only when isentropic variations of the J-function are allowed.

A more general approach to the problem, in view of the form of the
derived equation, seems to indicate that, in a region admitting an arbitrary

thermodynamic process having the form

J = J(S) (5.1)

the propagation of J and S waves are mutually dependent so that entropy
generation causes a J-wave emission (and vice-versa) with additional contri-
butions to those phenomena being made by the viscous effects, body forces and
velocity fluctuations. In addition, the obtained Equation (4.70) is still
coupled to the remaining equations of motion. It would thus ‘be useful to
consider the possibilities of uncoupling these equations by idealizing the
process to straight lines in the J-S plane, a procedure which would be
particularly suitable for the application of this analysis to the propagation
characteristics of a finite amplitude pressure wave. For it is feasible to
consider the two regions, a highly perturbed region with a possible
appearance of moderate shock waves which is imbedded in a region of quiescent
fluid, this second quiescent region admitting of finite amplitude acoustic

waves caused by the perturbed region.
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This idealization implies, basically, a far field noise analysis since
near field effects must admit a mixed J-S process taking place as represented
by Equation (5.7).

It is apparent from the previous analysis and the obtained results that
entropy changes would predominate in the perturbed region due to the highly
dissipative character of these processes (e.g., shock wave appearances). In
such a case the pressure and density functions would be primarily dependent
upon the entropy states of the fluid particles and the thermodynamic process
may conceivably be approximated by J=constant and S varying. In terms
of the previous analysis the differential equation governing such a

dissipative region would be given by

? )
v 1 DS Vs
vz(;mz)'”

B_
c
vV

X, 3X
i L

ou - U
J

(5.2)

In other words, in a region in which velocity fluctuations, viscous
effects and non-conservative body forces predominate, an S-wave is generated
whose propagation characteristics are largely determined by the non-isentropic
speed o. Moreover, in the presence of sudden discontinuities in the region
due to instantaneous velocity or viscous changes, entropy effects will also
be generated and must be considered as indicated by the form of Equation (5.2).

On the other hand, when the quiescent region is considered, the
assumption of far field effects would also call for the additional stipulation
of isentropy. In this case, excluding the perturbed region from consideration,

the governing Equation (4.10) reduces simply to:
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2
D 3 2 3
7 (o] - [l -

Here, the functional value of az tends to the isentropic propagation speed
az, as entropy changes approach zero.*

Finally, when both regions are considered simultaneously, with the
dissipative region playing the role of a forcing function propagating acoustic
waves into the quiescent region, the governing equation (4.70) takes on the

following form:

2 2
D 3 2 2 B D ] DS 2
— Kn&) - —{a — tn[p——] = — — -vSi +
Dt [ kpo] 9% X [ Py S I
aw. U,
) 1 9 AL
N -_(T,.)w,] ty = (5.4)
axi [p axj 14 A * axj. axi

It should be noted, finally, that in the more general case where no
simple assumption of two distinct thermodynamic regions can be made and
where the respective paths of the thermodynamic processes in the J-S plane
do not follow straight lines, as is conceivable in these extreme physical
conditions, the analogy between Equation (4.70) and that derived above cannot

be drawn a prioni.

*See Section VI.
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6. THE PROCESS J = CONSTANT

In accordance with the preceding derivation, the region in which
dissipative motion predominates will be approximated by the thermodynamic
process J=constant. This region, in which entropy variations pfedominate,
permits thermodynamic variables which are, by hypothesis, functions of the
space coordinates and time through the medium of entropy.

Using Equation (3.6) it is inferred that

_39_] e L 6
{Emj ALY 6.

Integration of this equation yields the pressure density relation for the
J=constant process:

1

Y

1 Y
PTT ZPTAF (6.

8
with A being the integration constant (Figure 1).

Coupling Equation (6.2) with the entropy equation for a perfect gas

]

P
where B 1is a constant, yfe]ds the pressure as a function of entropy for

the process: Y
Y-T

S-S

- A
p = Y—YLBBZ‘exp(— CO)-B (6,

P
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Figure 1. Pressure ys Density for J=Constant Process Applied to
Shock Laver Transition Flow
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Let p, and o . refer to the isentropic values of these functions
when S = SL (£ = 0,1) respectively. Under these conditions the constant
B 1is determined in terms of either initial or end conditions (Equation (6.3)).

From the condition that
p=p, when S=38 (6.5)

the constant ratio % in Equation (6.4) is also determined. The resulting

expression for the pressure function takes on the following form:

Y
=T

2 S-S
p=p, | (-n% exp(' co)-’ +1 (6.6)
ao |4

Here ag is the isentropic propagation speed when S=S The constant

2

0

parameter g~ is now evaluated from the condition that p=p; when S=8

1
at the end of the process

-1
Vi T
% (PJ)Y -1
Y- Py
o - L \Y ' (6.7)

It may be shown in a specific application* that, when no entropy pro-

*For moderate shock layers, the rumerator and denominator of Equation (6.7)

are expressed in terms of the upstream Mach number Mg. Setting Mg = J+e
. Lim 2 1\, .
it is found that, as ¢ +~ 0, c 08 = 0 ( - —7), i.e.,as S, » so,

2 €
B° » - » (see Section 7).
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duction occurs, i.e., when $;* S, in the Timit, the value of the parameter
82 tends to minus infinity in the 1imit. This property makes Equation (6.7)
isentropic when SI > So, as expected.

On the other hand, once a non-isentropic, J=constant process takes
place, i.e., S,> So, the parameter 32 becomes finite. Under these con-
ditions its existence and constancy serve to underline both entropy production

2 becomes

and irreversibility of the process. For once the parameter g
finite it reflects the process of entropy production and its constancy
determines the irreversible character of the event.

To evaluate the density o as a function of entropy for the process

J = constant, Equations (6.3) and (6.6) are used to yield:

!

, Y-T
2 S-S S-S
0= P (vy-1) _/3_{ exp (- = 0) -1+ 1 exp (— —E—Q ) (6. 8)
% p P

Equation (2.7) combined with Equations (6.6)and (6.§) yields the

temperature T as a function of entropy for the process J=constant.

g 8-S, 5-3,
T=T, (r-1) = | exp (— — | - T+ T expl— (6.9)
a, p p

It is apparent from Equation (g4 q) that, as the entropy g tends to

S T tends to TO’ which is the isentropic value of the temperature

0,

function.* In a similar manner, when S tends to S T tends to T,.

1 1
These can be readily verified by using Equations (6.3), (6.7) and (6.9)

2 _ o f1 51750 3
*Note that, as S-Sy >, B = ()(-77) , and |exp | - —) - 1= 0(e”)

(See Section 7). P

-30-




The preceding derivations allow the determination of the non-

2

isentropic propagation speed o~ as a function of entropy. Using

Equations (3.8), (6.6) and (6.8) it is apparent that:

S-S
{y-1) BZ exp(—-——il)- 11+ az
c 0
|4
= (6.70)

s-s, a
vjexo { - —— ] -1+ -+ 1
P B

The non-isentropic propagation speed uz is plotted for different entropy
production values in Figure 2.

In the 1imiting case when S tends to So, az tends to the
isentropic propagation speed ag, as indicated by the form of Equation
(6.10).* Here it is of interest, however, to consider the value of the
propagation speed o = @ when S = S,, i.e., at the termination of the

non-isentropic J=constant process. To this end, Equation (6.710) is written

in the form
S,-S
2 170 2
(vy-1) 8 exp (- T)- 11+ @,
a? - 2 (6.11)
3173 S AW
(y-1exp | - — -1+ e | -3 +
P P B

Equations (6.3) and (6.7) are then used to obtain the following

substitutions:
I
p Y a S-S
(-—l) = —% exp (— _é_ﬁ) (6.12a)
Po @ P

. 2
*When no J =constant process occured, i.e., when [g°| + =
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and

S,-S a p Y
(vy-=1) | exp (— _%T_Q_) -11 = (-—L) -1 (6.12b)
P 8" |\ Po

Under these conditions Equation (6.77) simplifies to

|

&)

?
7 Y
0.] = '——'7 (6.,3)
a
1 + -%
N

In this case, however, the parameter ez is finite, since a non=
isentropic process took place. Thus the propagation speed at the end of the
process does not reduce to its corresponding isentropic speed, but is
modified by a factor 1

1+

Ule _.QN

It will subsequently be shown that, for small entropy changes, this factor
is close to unity.*

It appears from the above considerations that when a process
J=constant occurs in which entropy changes predominate, the thermodynamic
variables (p, o, T, az, etc.) are functions of the history of the process
rather than the instantaneous values of the state of the fluid particles

(note the reference to 30 as the initial state to which all values of the

*For Jarge entropy variations (M > 5.0) the above statement does not hold.
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variables are referred). Moreover, whereas all functional values of the
pressure, density and temperature are continuous at the boundary of the
region in which the process takes place, this is not so for the derivatives
of these functions.

For it is noted that all functions take on their isentropic values
on the boundary of the region, excepting the propagation speed o, which
differs from its isentropic counterpart at the termination of the process
by a factor which is directly dependent upon the amount of entropy production
during the process and tends to unity as the entropy production tends to
zero.

It then formally appears that a non-isentropic region may have a
discontinuous boundary due to a difference in the propagation speeds when
it adjoins an isentropic region. However, the functional values of the

thermodynamic variables are not discontinuous.

7. THE CASE OF MODERATE SHOCK WAVES

The preceding analysis lends itself to simplification when the
entropy production region under consideration is the region of a moderate
shock wave.

To evaluate the functional variations of the thermodynamic variables
in the shock layer as a function of entropy production, it is convenient to
evaluate initially certain recurring expressions appearing in the preceding

analysis and given by

1
P\ -= S,-S
(J.) Y_11; exp <— ]c 0)— 1) 82; etc. {7.1)
Po )
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Here state zero -denotes the value of the variables in front of the
shock layer, and state one refers to their value behind the shock Tayer.

From the shock transition equations it {s evident that

y-1 Al
i Y ZYMSAane - yv-1) )"
___) = (7.2)
o Y + 1
1
( $,-3, (v-1)M5s.n" Y+ 1 Y
Qx‘p - ¢ = ; vl 2,\ a /] ll{ ; 2 (7.3)
p J (Y-TiMgpadin™6 + 2 | 2¥Mysdine - {v-1} )
p (Y+1)M24ane
1. 0 (7.4)
o 7 . 7 :
0 (Y—IJMOA&n g + 2

Let us consider the value of the parameter 62. It is apparent

from Relation (6.7) that

Y-1
ag ZYMgALnZe - (v-1)
. -7 ( S ) -
- 7 {7.5)
(Y+7)M§Ain29 ) ( Y o+ 1 )Y
t3 i - 1
( (Y—T)Mgéinze + 2 zvn%giéyé - (v-1)

In the 1limit, when S’ tends to 30, the normal component of the
Mach number upstream of the shock layer tends to unity. Consequently,

Equation (7.5) may be evaluated in the limit by setting

Mgéinze 1 +e (7.6)
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Following this procedure it can readily be shown that:

1

p %
A Y A v-1\ 2

(-)35-) 1 = 2 (?YT’-)S - 2<—Y—>E + . .. (7.7(1)

S,-8
exp(- 1(1_ 0)— ] = - %—(Y—-LLZ— 53 + . . . (7-7b)
p (Y+1)
and
p
1 2 2 2 4 [(1+2v) 3

_= ] = c + € - 3 e + . .. (7.7C)
oy Y+ Ty 3 7m)?

Hence, as S, > 30’ i.e., as ¢ approaches zero (to the first approximation)

S, > So e » 0 “340 T (7.8)

YA ..
Limct B° = Limit Z[Y‘*]]]‘__
_—2— = (o]
€
This is the condition which makes the J=constant process isentropic in the
1imit, in accordance with previous derivations [see Relations (3.§) and
(6.7)].

The parameter Bz

is plotted as a function of Mach number for a
given shock transition process in Figure 3.

In a similar manner, using the shock transition relations, the
values of the functions p and p versus entropy are plotted in Figures 4
and 5.

It should also be noted that most of the derived relations for

pressure, density, etc., contain the factor
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S,-S
E - g’ { exp (i —15—9) - I} (7.9)
p

Now in the Timit as S, tends to Sys the parameter 82 tends to
negative infinity as (- 17 > [see Equation (7.8)], whereas the second factor
€
in Equation (7.9) tends to zero as | -53) [see Equation (7.7)]. Hence, the

total expression in Equation {7.9) tends to zero when S, -~ S, (and

1 0

S > S,) as expected.

The following important consequence of the above derivation should
be noted. Even when a small entropy change occurs during any arbitrary
process, the non-isentropic effects cannot be arbitrarily disregarded,
for it could be reasoned that, even for. the case of weak shocks, the entropy
variation is of a third-order magnitude, and therefore its effects could
conceivably be disregarded. On the other hand, the present theoretical
considerations point to the fact that this reasoning may not be justified.
This is due to the fact that, even though the entropy variation is of a
third-order magnitude, its product with the process parameter 32 varies
as a first-order magnitude [Equation (7.9])]. Thus, all the functional values
of pressure, density, temperature, etc., in the non-isentropic region also
vary as a first-order magnitude. Moreover, the differential equation
governing the aerodynamic sound generation, as derived in Equation (5.4) has
also first-order variation of the non-isentropic terms. Consequently, the
contribution of the non-isentropic terms cannot be disregarded within the
framework of this analysis and the entropy production terms must be taken into
account even for small variations of the entropy functions in the process

considered (e.g., weak shocks).
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II. ENGINEERING APPLICATION

8. INTRODUCTION

A simplified engineering model of the propagation characteristics of
a finite amplitude pressure wave in high-speed flow with moderate shock wave
formation is presented in the subsequent sections. The actual computations
of the results were based initially on a previous model (Peter and Li, 1965)
in which only non-isentropic changes of the pressure function were con-
sidered, since at that time some of the results of the present analysis could
not be incorporated into the computer programs.* Nevertheless, the basic
characteristics of the derivations are similar in both cases and serve to
illustrate some physical aspects of non-isentropic forcing functions in
aerodynamic noise generation.

In accordance with the theoretical aspects of the preceding analysis
an entropy-producing region imbedded in an isentropic medium will produce
acoustic excitations in the far field. In the near field a mixed J-S process
takes place** with a resulting entropy wave emission. The near field mixed
process will not be considered here. Emphasis is placed mainly on the
effect of finite amplitude wave propagation into a quiescent isentropic

region.

* The only difference consists in the Mach number dependence of the wave
amplitude. This adds a constant factor to the decibel count of the
resulting intensity.

** See Section 5.
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The governing equations for the propagation phenomena have been
derived in Equations (5.2) and (5.4). Equation (5.2) indicates that non-
conservative effects of fluid motion, i.e., rotational velocity fluctuations,
viscous effects and dissipative body forces cause an entropy wave propagation
in the perturbed region. Equation (5.4) indicates that, when the perturbed
region is imbedded in an isentropic quiescent medium, an acoustic excitation
of the quiescent region also takes place.

In the present engineering approach the thickness of the transition
layer is disregarded and a discontinuous jump in the value of the forcing
function is assumed. The time dependence of the forcing function enters
through a series of disturbances caused by random distribution of impulses
imparted to the shock layer. An order of magnitude analysis indicates
that entropy contributions to the forcing function predominate while velocity
fluctuations are of second order magnitude even for the case of weak shock
waves. Their effect on the forcing function seems to be indirect by impart-
ing initial excitations to the entropy function and thus triggering the

mechanism of emission.

9. ENGINEERING REPRESENTATION

In accordance with the preceding discussion, the governing differential
equation will now be applied to analyze the propagation characteristics of
moderate shock layers in supersonic nozzle flow.

it was shown in Section 5 that the equation representing non-

isentropic wave propagation into a quiescent region is given by:

-42-




v F]
+v '§-x—— 3% . (9.”
k) A

case of a shock layer is now considered. To do this it is
necessary to specify the right-hand side of Equation (9.7), particularly the
entropy function and its gradients. A rigorous functional evaluation of
these variables cannot be accomplished, however, without solving simultaneously
the remaining equations of motions [see Equations (2.7) to (2.4)] with

which Equation (9.7) is still coupled. To circumvent this difficulty it

will be necessary to represent the J-constant process as if it is taking
place in a region of zero thickness, so that a sudden discontinuous jump in
the dependent variables across the shock layer occurs. This representation
ascribes to the remaining equations of motion a contribution whose mean
square value is given by the Rankine-Hugoniot relations. However, the

formal derivation of the governing equations has implied the existence and
continuity of the dependent variables up to and including second derivatives.
This restriction 1imits the analytical representation of the discontinuous
character of the dependent variables to those functions whose derivatives

admit analytical characteristics. For this reason generalized functions
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have been employed to represent the formalistic behavior of the jump con-
ditions during transition. Their gradients become Dirac Delta function:
whose successive derivatives admit analytical interpretations.

It will be shown subsequently that this discontinuous character of
the dependent variables during the process of transition results in a radiating
acoustic dipole field.* The radiating dipoles are distributed over the
shock layer and their local strength is proportional in the mean to the
Rankine-Hugoniot  transition values.

A notable simplification of the mathematical derivations may be
achieved by imposing upon the radiating field the condition** that the time
dependence of the forcing function will enter through a series of disturbances
caused by a-random distribution of impulses imparted to the shock layer.

The time derivatives of these impulse functions are multiplied by mean
transition values which determine the amplitude of the propagated wave and
which may be regarded as slowly varying continuous time functions with
negligible gradients. As a consequence, the time derivatives of the impulse
functions may be neglected in the first approximation in view of the fact
that no time integration appears in the solution to the wave equation.
Physically, the assumption implies that mean transition values of the
forcing function determine the amplitude of the emitted waves, whereas the

random time impulses supply the mechanism triggering the emission.

* Section 10.
** This condition is similar to that imposed on the forcing function used

in computations (Peter and Li, 1965, also Section 8).
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Under these conditions, Equation (9.7) becomes

2 U .
1 3 (s 38 ) 7 2 i
2 o U, ——— W, =— |- B°V°S| + ¥ 1 _£
<, LBXL a? 1 xj axj_ xj
} I
Y B [p —-axj [TUJ + FL] (9.2)

An order-of-magnitude analysis of the forcing function of Equation
(9.2) will now be conducted. In the first place, since the region of the
shock in which the J=constant process takes place is represented by a layer
of vanishingly small thickness, the viscous term in the equation may be
accounted for by the jump across the layer to which the action of the
viscous forces is confined. (It can be shown that the viscous terms in
! such a discontinuous representation of the forcing function generate a
quadrupole radiation field which is of the next order of magnitude). In
addition, the body forces do not appear under normal flow conditions and
may be disregarded.

For the sake of convenience we will designate the remaining terms of

the function by wi(z =1,2,3)

o L2.2
wz = - B8°¢°S
au au
Ws = Y357 3% (9.3)
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It is evident that the two functions, w, and wz represent the
contribution of entropy production to the forcing function, whereas w3
designates the interaction of velocity gradients (fluctuations) and
represents their contribution to sound generation. These mechanical velocity
fluctuations will now be shown to constitute a second-order magnitude when
compared with the entropy terms of the forcing functions, even for the case
of weak shock layers.

To that end, consider the case of one-dimensional flow and transform

the term W, by the use of Equations (2.2), (2.13) and (4.4) to obtain

3

o, ou . ? 2
_A 4 _ 818 B- US
X 3K, ( 7 DZ') ( 7 TX ) (9.4)
§ T4 o o
where [u; = Ufx), 0, 0 ].
Equation (9.4) reduces to
2
U, U, 2
£ 4 B 33
L (k)
i A a

when mean intensity values are considered.
In the entropy-producing region, i.e., in the shock layer represented
by the process J=constant, the propagation speed o 1is of the order of the

isentropic sound speed , for very weak shock layers.* Likewise, the

*  Section 7.
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velocity U also approaches sonic speed* and is of the same order of

magnitude.

"~ Referring now to previous derivations, it was shown** that

8as ~ 0(ale) (9. 6a)
B2
-7-AS ~0le) {9.6b)
o X
with ¢ = (Mg - 1) and such** that e < < 1. It then follows that

82
u -(:Q-AS ~ O(aOE) (9.7)

Using these estimates in the term wL of the forcing function, as in

Equation (9.3), it is inferred that
2
W, ~ O(aoe)
2
Wy~ Olajye)

Wy~ Oade?) (9.5)

Thus, the present theory indicates that velocity fluctuations
(mechanical effects) in a non-isentropic region are of a second-order
magnitude when compared to the entropy terms even for the case of weak shocks

when entropy variations, pex se, are very small.

*  From above

**  Section 7.
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It should be noted, however, that such velocity fluctuations may
affect the non-isentropic sound generation indirectly by imparting initial
excitations to the entropy function, thus providing the triggering mechanism

necessary for emission.*

10. AN ACQUSTIC ANALOGY

An acoustic analogy is now constructed in order to evaluate the pro-
pagation characteristics of a stationary shock layer forming in the exhaust
of a fixed supersonic nozzle. The shock layer is regarded as a stationary
region from which acoustic excitations propagate into the surrounding
quiescent medium. The analogy disregards convective and dispersive effects
of the emission mechanism. On the other hand, the local entropy gradients
which predominate in this analogy were shown** to be of a comparable order
of magnitude and represent a substantial part of the overall problem.

The differential equation governing this emission process may be
put, in view of Equation (9.2) and the subsequent discussions, in the

following form:
—-——2-32 l £n (p—J I - aZVZ lﬂn[p—] I =
ot ‘ 0 0 ! 0

2
- & o [ARIH(z-h) § (2] (10.1)
v

*  See Equation (5.2)

**  See Equation (9.8§)
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Here the entropy function S has been written in the form discussed

previously
S = A(x)H(z-h){(2) (10.2)

It is noted that the spatial dependence of the entropy function is
represented by a product of an amplitude function A(x) and the Heavyside
step function. The amplitude function is proportional in the mean to the
transition values of entropy. Its dependence upon spatial coordinates is
introduced here to take into account thermodynamic non-equilibrium flows in
the region (e.g., curved shock layers).* For constant curvature shocks the
amplitude function depends upon the constant normal component of the upstream
Mach number. The present investigation will concentrate largely on the
latter case.

The shock surface is represented by the equation

z = hix,y) (10.3)

The spatial dependence in Equation (70.3) will imply axial symmetry.

In actuality the shock layer structure in underexpanded supersonic
nozzles admits, in certain cases, of a slight curvature before the onset of
the Mach disc (Peter and Kamo, 1963). However, in the present formulation,
the curved effects will introduce unwarranted complications due to the non-
equilibrium character of the flow behind the shock layer at the end of the
non-isentropic process (i.e., spatial entropy gradients). For in this case

the process parameter 62 will not retain its constant character stipulated

* It can be shown that such non-equilibrium flows make the thermodynamic

parameter 82 space-dependent.
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here unless its average value is used. Moreover, conical structures with a
possible Mach disc superposition should afford a good approximation, which
becomes exact in many cases.

Under these conditions, the total amplitude of the emission is seen
to depend upon the product (BZA) independent of spatial variation, with
the upstream normal Mach number appearing as a flow parameter.

The time variation of the entropy function ¢(£), representing an
impulse-disturbance imparted to the J=constant region, will be kepf in a

general form

§12) = ;—“-f rlw) ¢ ““tdy (10.4)

where T(w) is the Fourier transform of §(£).

The solution of Equation (70.7) may now be written

[o2]

~

EVL{B—J = - ;A-? -B~2- T w) ‘e—i'w'tdw
Po sn° a
» w
AL -a—O/L
y e l[H(z-h)Idv (10.5)
n

The integration is taken over the region of the disturbance.*

* Here the radius x is defined in the usual manner x = IE.- II;

7 = observation point coordinates; X = perturbed region coordinates.
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Let us consider first the simplest case of a normal shock layer
located at some point =z = ho, where ho = constant. Under these conditions
the term VZH becomes a derivative of the delta function d(z-ho) with
respect to z. As a consequence, Equation (10.5) may be written(using

the properties of the delta function):

(o]

£ §L n
2 . 0
A B —/(,M ] e ]
KnPZJ = — T{w) e dw —_ ] — do {10.6)
pO §m (—l-g 92 n
z=h

-0

The integral is taken over the surface o over which the disturbance takes
place.

It is evident that the obtained solutijon represents a radiating dipole
field located at z = ho. The radiating dipoles are distributed over the
shock layer emitting pressure waves whose amplitude is proportional to the
transition values of the product (ABZ). The product determines to the
first approximation the dependence of the acoustic intensity of radiation
upon the upstream Mach number. From previous considerations it is readily

deduced that:
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a’ ovilsinle - (v-11] Y
0 0 .
Y -1 Y + 1
7
Ag® = X
!
(Y+7)Mgéin26 v ¥ Y
77 77 -1
(Y-I)Moéin o + 2 ZyMOALn 8 - (y-1)
-y
2vMlsinle - (v-1) (v+1)Meain’e
x &n 7 7 (10.7)
Y + 1 (Y—I)MOALn g + 2

Here, MOALne denotes the normal component of the Mach number to a shock
layer inclined at an angle e=constant.

Equation (70.5) will now be generalized to include shock layers of
an arbitrary shape. Thus we let the shock layer surface be given by the

equation

Foltg,z) = vp * (10.5a)

where w’ denotes a family of given surfaces and wé=constant is that

particular surface which defines the shock layer.

This equation may also be written 2z - §{x,y) = 0, on the shock; 2z - § =con-

stant, otherwise.
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For convenience we define two mutually orthogonal families of

surfaces by

FLix,g,2) = v’ Flay,z) = v (10.8b)

which are orthogonal to F’ = ¢1

Equation (70.5) is now transformed to the curvilinear coordinates
¢* [4=1,2,3]. It should be noted that these coordinates refer only to the
perturbed region defined by the vector X and not to the point of observation

which is denoted by the vector E. Equation (70.5) is now written in the

form:
A ge oy
ZH[B——} = - 7 T{w)e dw *
Py sn° a,
XI/leE,$)VZ[H<w1-w3>] 1h2h3 dw’dwzdw3 (10.9)
where
L2 n
GIE,T) = | & K
4 N (10.10)
is a function of £ and the wé's.
Wbk obg,2) (10.11)
ST 73, .
s 3y v ,07)
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represents the Jacobian of transformation. The hi's(i = 1,2,3) represent

the metric coefficients of the curvilinear system.

In terms of the coordinates y* it is evident that

hh
2 ] 3 "3\ oH
vl = (10.12)
Rifghs | ay! ( n ) 2]

since H = H(w’) only. Thus, Equation (70.9) becomes

ee]

2 ,
we) <o L 8k re
0 & a,

-00

d oH 1,2,3
/// )B—J T;T dy dy“dy”  (10.13)

2B o)

and using the properties of the delta function, Equation (70.13) takes on

Noting that

the following form:
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2 ,
(B =8A B J rlwle™d,

B
pO v ao
L éi-n
0 h h )
ar ¢ 25 aylay’ (10.15)
eI n h1

If we denote the linear increments along the curvilinear coordinate

X

lines by dﬁi(i =1,2,3) so that
e, = h.dyt
L4

Equation (710.75) can conveniently be written in the form

fes]

2 .
lE - Aty [ rwe ™
Po b @

=0

£ é%—n
) | e
x de ,de {10.17
BZ, 1 2773
1d 1

1% 'WO
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This last equation clearly defines a dipole radiation field generated
by a shock layer whose form is represented by the surface wz. It is noted
that the dipole axis pointing in the direction of 21 is normal to the
shock surface. It is then of immediate consequence that the maximum
intensity of radiation of a supersonic nozzle in the presence of shock
waves will tend, in the light of the present theory, to be normal to the
shock surfaces. Thus a conical shock whose angle with respect to the jet
axis is 45° will radiate sound whose intensity will tend to be maximum along
the 45° axis of the jet. Since most shock layers in underexpanded supersonic
nozzles lie in the range of 30° to 60° inclination, it appears that the
maximum intensity of radiation will tend to follow this pattern.*

It should be noted that the resultant field of radiation is symmetric
with respect to the plane passing through the origin and which is normal to
the axis of the jet. This is due to the fact that the supersonic state of
the conditions prevailing upstream of the shock wave were disregarded in this
analogy. As a matter of fact, backward radiation will be impeded by the
upstream conditions to an extent which cannot be envisaged from the present
development. A more accurate picture of these effects could, it is hoped,
be obtained from the effects of the terms disregarded here but -appearing in

the governing differential Equation (9.7).

*See Section 11 for a more complete discussion of conical shock propagation

characteristics.
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It should also be noted that additional sources of radiation appear
in actual supersonic nozzle flow which could be, but are not, treated by
the present approach. For instance, at the termination of the shock at the
boundary of the nozzle flow a ring of radiating dipoles appears whose axis
is directed along the shock. Consequently, additional radiating sources
appear due to the tangential entropy difference between the terminating shock
and the surrounding medium. These effects, which must be treated separately,
will not change the present directionality and propagation characteristics to
a large extent due to the orders of magnitude of the respective surface areas.

The appearance of Mach discs in the flow could be treated by super-
position but it is doubtful if more useful information could be obtained
without a rigorous analysis of the complete non-isentropic phenomena of
high speed flows. This is due to the highly idealized nature of the present
analogy. For instance, it is idealized here that the shock transition takes
place locally., In actuality, a succession of waves appears in the flow, but
due to their geometrical similarity of shape, which appears to be of a pre-
.dominant importance in the light of this analysis, the total effect would
not be materially different.

This hypothesis does not seem to hold, however, when Mach discs
appear at higher Mach numbers. In this case, the successive shock formation
does not possess the geometrical similarity characteristics of shock layer
shapes. On the contrary, the successive shock waves which are distinguished
by their highly unstable characteristics, take the form of a fluctuating
cone. For this reason it is feasible that the idealization of conical shapes
could be extended to the propagation characteristics of transition layers, even
for higher Mach numbers, in spite of Mach disc appearance. In any case, a

separate basic investigation of these phenomena seems desirable.
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11. THE CONICAL SHOCK LAYER
It was shown in the previous section that the radiation characteristics

of an arbitrarily shaped shock layer were described by the forcing function:

2 , Akn
A B ~-Awt 9 e
n = Twle d ——-—) de ,de {(11.1)
[po o a70 f v w f f 3L (n 3%x

where kR = is the wave number and the integral is evaluated at the surface

le€

wi = wé. The subscripts i, J and k can take on any one of the values
between 1 and 3, but it is self-evident that i # 3 # k. This notation is
more flexible since it allows the choice of any coordinate of the curvilinear
triplet as the shock surface.

In the particular case of conical shocks it is convenient to choose the
spherical coordinate system:

o -7 "= 8 v o= ¢ (11.2)

so that the conical surface is represented by the coordinate wg = 8y where 8
is the value of the conical angle formed by the shock. Thus, referring to the
notation in Equation (17.7), it is inferred that i-=2, 3 =1, and k = 3.

In view of the above definitions the shock region is represented by
the coordinates:

X = D5in6cosd Y = psinosing z = pC0osO (11.3)

Using the above notation, Equation (771.7) takes on the following form

2 , Lhr
A B ~Lwt 3 |e . ~
in [TO%] = 8?--—‘17- I‘(w)e dw %[ )L] A/(.Vleo dpdd) (11.4)
0 9=60
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Let the observation point = Lzsn,z] also be defined in terms of

spherical system of coordinates

£ = Radnycosv
n = Rsdinysiny
z = Reosy (11.5)
Under these conditions the quantity 4 = IE - ;I may be written
1 = (RZ s 5t - ZERcm)% (11.6)
where
C0Ac = Adndsiinycos{¢ v} + cosecosy (11.6a)

It is now apparent that in the far field analysis the linear dimensions
of the shock layer are much smaller than the distance R from the origin to
the observation point. Thus Equation (77.6) may be expanded in terms of the
ratio /R

/L=R<1—%C_OA0+...) (11.7)

Consider next the integrand in Equation (717.4). The quantity x in the
denominator affects the magnitude of the radiated field but it has no effect
on the phase of the emitted wave, which is modified by the wave number k.
Thus, in the denominator, little error will be affected by replacing n with R.

We will write Equation (77.4) in the following form:

AB A4n0
n % 7 Ro (u,)e”““”2 ot g ae// ~oeoso gty ) (11.8)
'rra

and consider the expression in the bracket:

T = %f’/e-/(:kECOAG ds.d¢ (1].9)
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which should be evaluated at 6 = 6, after the differentiation. Using

Relation {17.6a} for cosc this may be written as
L b

1-2 j[ e-&kpCOAGCOAY 45 Q-&kpé&neALnchA(¢-v)d¢

36 (11.10)

0 0
Employing the integral form of the Bessel function representation, the above

expression takes on the fo]]owing form:

o 83_ / Akpcosocosy 3, (KBsinesiny)ds (11.11)
0

Performing the differentiation and setting ¢ = 6, one gets

L
—LhEhOAGOQOAy
1= ZnLkALnGOCOAy e JO(EBAineoéiny)EdF +
-uzp 046 ,c08Y - N
~2nheos8 jsiny Jl(kpéineoéiny)pdS' (11.12)
0

Using these results in Equation (77.&) the following expression for the

forcing function of the conical shock results:

Lo o]

L ARTALN" 0 ,c08Y . -{RkpCc0os6,c08Y
b’l(&) = 7 0 / I'(wlk e’t(kR-wt)dw / e 0 x
Po 4mayR -~ 0

7 . . I
AR 84n20 ,44nY .
x JO(EEALneOALny)3d5~- 0 ~[ rlulk e&(kR’mI)dw 5

Z,
SﬂaoR 4
. —&kpCOAeocoéY
N / 0 7 Using .inv 155 (11.13)
0
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Equation (717.73) represents the forcing function of a conical shock layer
radiating acoustic pressure waves into the surrounding quiescent region
subject to the simplifying assumptions of the present analogy. The angle of
the cone with the z-axis cf the coordinates is represented by 6 = 8- The

length of the cone is represented by the radial coordinate 5 such that:

0 <p <L

where L 1is the total length of the layer measured from the origin along the

conical surface. The diameter of the shock is given by:

d = 2ps4ind thus D = ZLs4n6

0 0

D being the maximum shock diameter which is assumed to be of the order of
the nozzle diameter unless more exact measurements are obtainable from
experiments.

Equation (717.173) is plotted in Fig. 6 and 7 showing constant intensity
l1ines for a number of frequencies.

In addition, simplified computer runs. for the case of paraboloidal
shock layers were performed using average constant values for the process
parameter BZ. These are shown in Fig. 8.

The obtained results indicate that, for low frequencies, the directionality
tends to align itself with the jet axis, whereas the higher frequency contri-

butions swing away from the axis and tend to be normal to it (e.g., shock
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layer with 8, = 25°. see Figure 6). A similar trend is noted in the case of

8y = 45°, even though, in this case, the maximum high frequency directionality
tends to but does not reach 90° (see Figure 7). The same trends hold true

for other shock shapes (Figure 8).

As mentioned previously,* the overall intensity of radiation tends
to a maximum in the directions normal to the shock layer. Noting that for
the relevant range of Mach numbers the shock angles vary between 30° to 60°
approximately (excluding Mach discs), it is to be expected, in the 1ighf of
the present theory, that the maximum intensity will tend to occur in the

same range with respect to the jet axis.

* Section 10
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Figure 6a. Polar graphs of lines of constant intensity in the ncuisc
field of a 25° conical shock showing the frequency dependent
directionality.

k = aﬂ- varies between .2 and 2 (cgs units)
0
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Figure 7a. Polar graphs of lines of constant intensity in the noise

field of a 45° conical shock showing the frequency

dependent directionality.
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12. THE TRIGGERING MECHANISM

The attempted theoretical treatment of non-isentropic flow
characteristics makes it feasible to offer some initial speculations con-
cerning the causes and effects of the mechanism triggering wave emission
from the entropy-producing regions. In accordance with the present
derivation, an entropy-producing region is governed by a non self-adjoint
(i.e., non-conservative) hyperbolic partial differential equation. As a
consequence, an entropy wave is propagated into the dissipative region
whenever a perturbation appears on its boundary or within the region itself
(non-homogeneous case). The stipulated growth of the propagated wave is
assured by the second law of thermodynamics which determines the direction
of the process. Incidentally, -it may be readily verified that, when a non-
distorted propagated wave pattern is assumed, calling for linearization
of - and the vanishing of first-order derivatives from - the equation
(self-adjoint form), isentropic flow conditions are implied, for in this case
the propagation speed o = oS} must be constant.

It is now apparent that, in the Tlight of the present theory, the
behavior of such entropy-producing regions will be determined by the
dissipative effects within this region and the excitations imparted to it
at the boundary. In the present approach of shock layer application when
the thickness of the region tends to zero the boundary effects.would tend

to be predominant. As a consequence of these effects, there seems to be a
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marked distinction between shock layers (regarded here as entropy-producipg
regions) formed by a supersonic motion of a solid in an unbounded medium

and those formed in the exhaust of a supersonic nozzle. For in the first
case when almost uniform conditions prevail upstream and downstream of the
layers, their infinite extent in the remaining directions tends to suppress
any possible excitations from these sources. On the other hand, shock regions
formed in the exhaust of supersonic nozzles have to contend with the con-
ditions of the free boundary at the termination of the layer in addition

to its upstream and downstream perturbations. Thus, for supersonic-exhaust
conditions potential instabilities are formed in the presence of any
dissipative effects (e.g., shear layers, velocity fluctuations, vorticity,
etc.), but the shock layers represent a first-order magnitude in comparison
with other sources, which in turn enhance their instability by appearing at
the free boundary where these shock layers terminate. It should also be
noted that the same unstable characteristics occur in a moving rigid body
when boundary-layer shock interactions take place, since the effect of rigid
boundaries at the extremities of the shock are effectively counteracted by

the fluctuating medium.
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In the present engineering approach, the characteristic input of the
boundary excitations is represented by a series of randomly distributed
impulses imparted to the shock layer. The actual physical nature of these
impulses is both space- and time-dependent, but their random. characteristic
fosters the belief that ergodic theory application would be a justification
to represent them in terms of any one of these independent variables. As
a consequence, a time-dependent behavior is used in the present approach.

Intuitively one could expect the Fourier transforms of these impulse
functions to reflect different probability characteristics for different
frequency bands into which these impulses are decomposed. It is thus
feasible that the characteristic Fourier transform should also be a
statistical aggregate of random impulse functions acting upon the shock
layer. Accordingly this characteristic Fourier transform could hopefully
be expressed as a frequency dependent probability distribution. From
heuristic considerations such a distribution should tend to zero for large
frequency values to effectively ensure the existence of the Fourier Intcgral.

It is felt that a separate, more rigorous investigation of these
initial conditions is needed in future developments of the subject matter.
However, for the present application, a simple representation of the
characteristic impulse function will be employed. Thus, the respective

distribution has been assumed for

0<w<w0

to be equal to unity. This implies that the function T(w), in terms of
which the time-dependence of the forcing function has been written [Equation

(10.4)] is equal to unity. Thereafter the transform is chosen to fall off
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as %% as o grows large. This choice effectively prevents the divergence
of the Fourijer integral for large values of frequency, even though it is by
no means unique.

Based upon the above model, it was found from the computational efforts
that the overall behavior of the resultant theoretical curves could be
correlated with experimental data in a straightforward manner with a single
exception. Namely, in all cases the frequency spectrum of the theoretical
results had to be shifted by a constant factor. This could be expected due
to the employment of the present acoustical analogy in which convective
effects and the Doppler shift were not included.*

Employment of the above model for the disturbances triggering non-
isentropic wave emission completes the overall theoretical representation
of the forcing function governing the acoustic propagation of shock layers
as derived in Section 10. The computation of power spectral densities of
the resulting noise field were accomplished by the application of random
noise theory.** The choice of the Poisson distribution as a representative
probability function for the successive occurrences of the emission phenomena
was decided upon.** A typical CRT plot of spectrum for the initial conditions
stipulated above is presented in Figure 9. From the results of the computation
it can readily be seen that empirical results also indicate the necessity of
the distribution to tend to zero for large values of frequency [see Figure 9
and Figure 11]. The plot represents a simulated run based upon Smith's Report

(E. B. Smith, 1966) for y = 50°

* Ribner, 1962.
** Rice, 1941, pp. 294-325.
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13, EXPERIMENTAL VERIFICATION

Correlation of the obtained theoretical results with experiments was
attempted by actual simulation of given nozzle and flow characteristics.
In certain cases conjecture had to be used concerning the shock structures
of the nozzle under consideration, but whenever possible these were obtained
from personal contacts.* Thus, actual simulation runs were carried out
using appropriate values for shock layer angle, its diameter, upstream Mach
number, etc. The various flow parameters used in the simulation of Smith's
experiments are presented in Table II. The results of these theoretical
and experimental correlations are shown in Figures 10 to 12.

Two shortcomings of the present acoustical analogy became apparent
as soon as comparison with the available data for a given simulation run
were made. In the first place, a shift in the frequency spectra of
the theoretical computations was noted, its value being an absolute constant
for each nozzle simulated. Since the present analogy .did not account for
convective and Doppler shift effects (Section 10) it appears that such
behavior of the computed results could be avoided by taking these into
account.

Secondly, it was found that the acoustic contribution of the
theoretical model tends to be overly exaggerated in the neighborhood of

the jet axis. The reason for this behayior may again be found in the

* e.g., Martin Co. report, Courtesy E. B. Smith.
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simplified character of the present analogy, since the attenuative
nature of this region is probably due to the effects of refraction

(Ribner, 1966) which were disregarded in the engineering computations.

On the other hand, the overall theoretical results and the characteristic
trends of jet noise phenomena seem to be closely following the general
perimental findings. From the simulation runs of Smith's
report the following facts may be noted.

a) In both the theory and experiment the directivity of higher fre-

quency contribution shifts toward 90° from the jet axis (Figure 10).
b) The computed results show a directivity shift back towards a 65°
angle from the axis for frequency increase above 3200 cps
(Figure 6b, K=2.0 plot), The experimental data of the report
indicate an identical trend, a 2.5 db intensity drop occurring
between 70° and 90° from the axis for center band frequency of
104 cps. [Smith, page B-3, Program Firing #1].
c) The total relative theoretical intensity change (as a function of

the spherical angle Y) is computed to be of the order of 12 db.

The above characteristic and the actual decibel count are well

substantiated by the experimental findings (Figure 10).
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d) The experimental measurements of density spectra exhibit a
sufficient number of data points to highlight characteristic
fluctuations of the curve in the higher frequency regions. The
computed values seem to analytically confirm this behavior
indicating it to be a characteristic Bessel function variation
(Figure 11).*

e) The computed spectral characteristics show a relative increase
of about 20 db/decade in the low frequency ranges. The measured
experimental values confirm the validity of the above result
(Figure 11).

f) The overall directionality characteristics of the theoretical
model show a marked correlation with the experimental measurements
(Figure 12).

A point of experimental controversy arises when the changes of
intensity with frequency are considered as a function of the spherical angle
Y. In Smith's report the directionality curves have the same bell-shaped
character, the maximum intensity varying with the frequency. On the other
hand, both the General Electric report (Lee, Smith, et al. 1961) and the

F-1 engine data** indicate an exchange of energy takes place in the range

* In correlating the spectral densities, a conversion from the 1/3 octave
band analysis used in experiments has been effected.

** Courtesy G. Wilhold, Unsteady Aerodynamics Group, NASA, MSFC;
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40° < ¥ < 90°. Thus, as the frequency increases, the maximum intensity at
about 40° decreases and that about 90° increases, the curve pivoting about
an almost stationary maximum value. The theoretical results of the present

model tend to support the latter but not the former trend
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TABLE II

Smith's Simulation
Shock Diameter (D \ 4 cm
\ 7/

Shock angle (o > 25°

Distance from Shock

R 3756 cm
Exit Mach Number 3.5
Non-dimensional cutoff .6

fr . wD
requency, 75b
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CONCLUDING REMARKS

The preceding investigation of non-isentropic propagation phenomena
was motivated by the desirability to represent in an analytical manner the
contribution of dissipative regions to aerodynamic noise generation. An
engineering application of this analysis is reflected in the concept of an
EPN (extended plug nozzle) device. Its function is to modify entropy-
producing regions (shock waves) in order to attenuate noise generation of
of high-speed nozzle exhausts. In the present study a mathematical model is
formulated and analyzed for some specific cases to determine the noise
generation characteristics of supersonic nozzles. For these specific cases
existing test data appear to correlate well with the theoretical results.

As it is in most cases, the present approach is based upon a rather
simple basic idea which may have a tendency to become lost in the techni-
calities of the derivation. Its essence is the choice of independent thermo-
dynamic variables which would depict non-isentropic pressure fluctuations.

It may be readily seen that if, for instance, the pressure and entropy
be chosen as independent variables, all pressure gradients become isentropic
and, as a consequence, so do pressure fluctuations. This fact seemed an
unwarranted restriction upon the physical phenomena taking place in entropy-
producing regions.

It should also be remarked that the choice of the thermodynamic J-
function was based upon physical aspects of the preceding analysis coupled
with dimensional considerations. The actual derivation of the J process

was obtained, however, from an analvsis of convected entropy changes in
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equilibrium flows. This latter alternate approach has not been presented
here due to the initial stages of its development and also to avoid
excessive complications of the present analysis. It is felt, moreover,
that the scope of such a derivation warrants additional analytical efforts
in a subject which may be incidental to the propagation characteristics of

a finite amplitude pressure wave.
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