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SUMMARY

A theoretical a, , lysis of the propagation characteristics of a finite

amplitude pressure wave is presented in the following sections.

The analysis attempts to study the contribution of entropy-producing

regions to the mechanism of aerodynamic noise generation. It results in a

non-linear convective wave equation in terms of entropy and a thermodynamic

J function.	 A direct analogy between the derived governing equation and

those used in classical literature is obtained. An idelization of the

processes considered permits the uncoupling of the equations of motion

with a consequent construction of an acoustic analogy treating shock wave

emission of finite amplitude acoustic waves.

An engineering approach of this analogy is reflected in the concept

of an extended plug nuzzle whose function it is to facilitate aerodynamic

noise attenuation by modifying the entropy-producing regions.

_V_
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I. BASIC THEORY

1.	 INTRODUCTION

This theoretical analysis of the propagation characteristics of a

finite amplitude pressure wave has been concerned with the contribution of

entropy-producing regions to the mechanism of aerodynamic noise generation

in the exhaust of a supersonic nozzle. It is hoped that the present approach

will tend: to suppleoient some aspects of the contemporary investigations on

the subject of aerodynamic noise generation.

A first, atter;:,!'. to investigate the feasibility of aerodynamic noise

attenuation by modifying the geometry of entropy-producing regions (in this

particular case, shock waves) resulted in the concept of an extended plug

nozzle (Peter and Kamo, 1963). The present analysis attempts to put these

early ideas on a more rigorous basis by considering non,isentropic processes

coupled with the equations of motion of fluid dynamics.

The analysis results in a nonlinear convective wave equation in terms of

entropy and a thermodynamic J-function. A non-isentropic propagation

speed a is defined and expressed in terms of the entropy function. This

propagation speed reduces to the isentropic speed of sound as the entropy

production in the process tends to zero. A proper choice of the thermo-

dynamic J-function allows a direct analogy between the derived governing

equation and those used in classical literature (Lighthill, 1952, Phillips,

1960, Ribner, 1954-62) when the entropy term are assumed small. The

equations of motion are simplified and uncoupled by idealizing the process

-I-
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to consist of straight lines in the J-S plane, each referring to a

different region in space. This idealization implies a far field noise

analysis since near field effects admit of mixed J-S processes taking

place.

It is also shown that, within the framework of this analysis, the

pressure, density and temperature functions depend on the history of the

process rather than the instantaneous states of the fluid particles. It

appears, also, that, whereas all functional values of the thermodynamic

variables (e.g., p, p, T, etc.) are continuous on the boundary of a non-

isentropic region (adjoining an isentropic region) their derivatives are not.

The non-isentropic propagation speed a differs from its isentropic counter-

part, at the end of the non-isentropic process, by a factor which is close,

but not equal to, unity. This factor depends directly upon the amount of

entropy produced during the process and tends to unity as the entropy pro-

duction tends to zero. Moreover, it also appears that, even though the

entropy variation for weak shocks is of a third order of magnitude, the

effects of entropy production cannot be disregarded since, in the governing

differential equation, entropy effects are of a firs'-order magnitude due

to an additional factor appearing in the analysis.

2. THE NON-ISENTROPIC CONVECTED WAVE EQUATION

In the proceeding analysis it is assumed that a perfect gas satisfying

the equation of state

p - pRT
	

(2.1)

forms a region of entropy production. In a fixed Cartesian Reference Frame

the following equations of motion describe the flow characteristics

-2-
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au4 
_ D	

.tn l p
	

(2.2)

	

5i 11	
00)

Mc  t 2P— 
1 a

(Ti f)	
)

+ 
p axJ	 a 

axJ	 +	 (2.3

pT V7 = 4 + az.. k 
az. + 2	 (2.4)

_	 J	 J

The following notation is used:

P	 = density of the fluid

P	 = pressure of the fluid

T	 = temperature of the fluid

ui	= velocity vector

S	 = entropy

u	 = viscosity coefficient

k	 = heat transfer coefficient

F. 	 body forces vector

2	 = heat sources

R	 = gas constant

0	 a dissipation function

Ti; = viscous part of the stress tensor

D	 a	 a

V7 = 2Z +u
; 

ax'

In terms of the above notation the following subsidiary relations are needed:

-3-
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Tti1 
= 2u c^, - 3u c^^ ai1

2	 2	 2 ll	 2	 2	 2
= 4u c12 + 

c13 + c
23

) 
+ 

3u J(':11 - c
22) + ( c 11 - £33^

+ (c 22 - c33)
2

wi th

z 1	
au

ij	 ax1+
a.x

6i1 
= Kronecker delta

Since the analysis of entropy-producing regions implies a strong

coupling between the mechanical conditions .(momentum equation) and thermo-

dynamic conditions (energy equation), it will be useful to put the momentum

equation in terms of thermodynamic variables. To do so we first take the

divergence of the momentum Eouation (2.3) to obtain

au ou 	 aF+ a	 1	 a	 1	 a(	
)	

_	 ^-	 (2.5 1ax̀s az^ p axe = ax' a ax. T^1	 axe ax + ax.
1

Let J be a thermodynamic variable (to be defined at a later stage)

and consider the pressure to be a function of density and the variable J.

Under these conditions the pressure differential may be written in the form

dp = (t) , d p + tfJ
P
 di	 (2.6)

` J 

-4-
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We next define a quantity a having the dimensions of velocity and

given by

Q2 = rap) 	 (2.7)
Under these conditions the pressure gradient term in Equation (2.5) may be

written as

Imo—=a2 a	 tn(pl +l (a) aJ
P ax.	 a	

P 00)
	 p l 

)R 'Xi	
(2.9)

In view of relations ( 2.2) and (2.8), Equation (2.5) takes on the following

form

V 2

" D
.fin

(p

a0

+	 a
a 
4

a2 a In
axe

(g^_1

p 0

+	 a
ax j-

1

p

(.^a. l
8J

aJ
axjp

a a	 1 a
az` p az;

Now let us consider the en

a calorically perfect gas will be

au au
(Ti1) +	

a	
az 	 (2.9)

tropy function. To simplify the derivation,

assumed to yield

	

tnf p0 J = Y ^rt^ 0I - ^	 (2.10)
J	 J	 p

where c  and cp are the specific heats of the gas and y is their ratio.

A function G will now be defined in such a manner that

G a- ev 
tn. IPPLO)

Under these conditions, Relation (2.10) becomes simply:

-5-
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2nt^l _ - e (S + G)	 (2.12)
0	 p

In using Relation (2.12) in Equation (2.9) the thermodynamic variables

S and J will be regarded as independent variables. As mentioned previously,

the thermodynamic variable J will be defined later. Before using Relation

(2.12) in the differential equation (2.9), it will be convenient to note the

form of the derivatives of Equation (1.12). In accordance with the above

hypothesis we have

d
C 

tn
tp0 ) 

_ - ^ [dS + dGl
J JP	 .

dG= (
JJ

dS+ IJSdJ

Hence, taking the first and second differentials of Equation (2.12), the

following relations are obtained

	

d2n I p
p 	

p

	

J	
- ^	 1 + (i	 dS + 	 dJ	 (2.13)
 l 1J	 S

	

d2 2n I 0	 = -	 1 + ( a j J d2S + d 1 + ( l J ]dS +
`	

p
	 `

+ d 
l^IS 

dJ + pa d2J 2 j	 (2.14)

Consider next the differential Equation (2.9) and write it in the

following form:

-6-
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4D'	 to+ a2 axaax.	 1p ,	 + ax2 ax.	 tn(p I l
l J 	l 	 t JJ[Y-ni j C 	ov 	 o 	 ^. ^. 	 oz

a	 a ^t	 + F	 - _a	 p ( a1	 aJ	 - a,.,^ a i 	 (2.15)
a'xi 	 ax  ^1	 .^	 axi	 a ax

j 	axj az'

From Equations (2.13) and (2.14) the last equation may be written as

C'0	 J Dt 	 V7	 J C	 ss

+ (aGl a2J _ a2 1 + aG	 _ a	 1 +

(-,7)Si7	 (^)	 a2S	 2 a(8G)
J 	 axiax^	 3X44  	

as
 J azc

a2	 G	 2 (aG)	 a 
2 
J	

3a  
as

a ax. [
a

^^) ] 
aJ

axti " a a3 s ax^ax^ a3 a'xi
Ic	 s

_ aa 2 (aG,	 aS 	 8(% 2 (aGl DJ	 a	 1 a	 T
az^ 7 J ax e axe (CJ s az^ axi a ax ^j) 

+ F 
.c

a1 (a l aJ	 a^ auk
à
xi
 a a p a,	 axj axe

Collecting terms in the above equation, the following relation is

obtained:

-7-
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1	 +	 (aGl

J

D2s

a
^

a 2	 8 2S	 + U
axiax^	 iT

tn, 1 +	 (aG
, J

DS
3F

- «2 
a

t-n	 1 +	 f aaG, az azaz?	 •a	 ...c J •.c i	 .c

lam/

U - a2 
axaax. + 2nl

J 	
+

`	 s v^ ^.	 ^. `	 J s

a2  —
74

(a3^
] aJ	 3a	 aj

az..	 ax?	 ax̀ • + cp 	 + Fa az•• ITij)	 .•• ax••

ep ax4
au auk	 a p (a^^1 aJ

ax _ cp ax IL [ l3JJP ax ]
1

(2.16)

To simplify the notation we introduce two functions H and K given

by:

	

H = 1 + lei J 	 K = - [7 is
	

(2.11)

and write the last expression of Equation (2.16) in the form

a .ate	 aJ	 c	 a	 a 2J	 a	 1 a	 aJ
- 

ep ^ C 
1
p I'MP axe ` "	 (,P ax^ax^ - cp ax, C p ( ^ I ax,

(2.1 8 )
J	 P

In view of Equations (2.11) and (2.18), Equation (2.16) becomes

-8-
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D 
2 
S	 2	 a 2 	 D	 DS	 2 a	 2 aS sD--^ - a 8xtiax^ +	 (Qn H) PT - a 

a	
(•fin H + .fin a) 8Xj

n 	 -	 + ^ p li8l	 axaax• +	 (.en(-K)) ^ +
Dt	 p.	 4 ,4

IN 2 a (tn (-K) + .En a 2) + c	
a	 l	 aJ

axti 	axe P ^a 1p	 axj

c^	
a	 ^ a	 au auk

(T

	

axe p aX1 
ij) + ^	 az'L ax^

Simplifying the above, the following differential equation is obtained:

a2S a2v2S + D	 DS	 2 a	 2	 as

D
D - 	 1^(^nH)VT	 axi f^na H) 9X4-

2	 c
H- 	a2 +	

- IIJJ	
v2J +	 (en(-K))	 +

Dt	 ` P

2a ( 	2)	
c
p a	 1 (apl	 ax

- a 
a^ 

.2n1 -a K1 
+ - az^ p ( a^I)p 	8Xj +z 

+	 a	 a	 +	 _ a	 au^

	

axi a ax' ( T ^^) ^^	 axi ax	 (2.19)

-9-
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Equation (2.19) represents a nonlinear convective wave equation in

terms of the two thermodynamic variables S and J. It implies that, in a

non-isentropic region, entropy changes are propagated convectively within

the region. The source distribution is represented by the right-hand side

of Equation (2.19) and is shown to depend upon the nature of the thermodynamic

variable J and also upon the last two terms of the equation representing

the effects of viscosity, body forces and velocity fluctuations. The shape

of the characteristics is directly a function of the propagation speed

a2	
[f)

J
	 (2.20)

Formally, this propagation speed depends directly upon the entropy

state of the fluid particles and also upon the process J - constant. Through

these two thermodynamic variables it is a function of the space variables

x, and the time ,t. In addition, the form of the equation indicates

dissipative processes due to the appearance of first derivatives both in

space and time and also due to the highly nonlinear character of the pro-

cesses involved. This is reflected by the non-linearity of the equation

since all coefficients on the left of the above equation are functions of

entropy, i.e., of the dependent variable (except the coefficient of the

second time derivative which has been incorporated in the forcing function

on the right-hand side by suitable division).

3.	 THE THERMODYNAMIC VARIABLE J

Equation (2.19) governing'the flow in non-isentropic regions admits

two independent thermodynamic variables, namely, the entropy S and the

variable J which, so far, is of an arbitrary character. The remaining

-10-
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variables, whose mathematical forms are sought in the present investigation,

e.g., the pressure p, the density p, etc., are functions of the space

coordinates xi (i + 1,2,3) and the time t, through these two independent
variables. To obtain an analytically meaningful result from the previous

derivation, the thermodynamic variable J must be uniquely determined. Now,

it appears that the unique determination of this variable cannot be achieved

from purely mathematical or thermodynamic considerations, since within the

framework of these two sciences the variable J need not be specified

to obtain the equation represented by Relation (2.19). This is amply

demonstrated by the process of the previous analysis resulting in the actual

derivation of the governing equation without recourse to any hypothesis con-

cerning the character of the J function.

To specify the form of the thermodynamic J-function it is necessary

to scrutinize some physical aspects of the present derivation. Thus, if

n - n(S,J) is a given thermodynamic variable, its differential may be

written in the form:

do 	 S dJ + ICJ JdS	 (3.1)

The coefficient of dJ in Equation (3.1)represents an isentropic process

with J varying, whereas that of dS reflects entropy variations during

a J - constant process. It is apparent that in the case of an entropy-

producing region the contribution of the J - constant process must

predominate.

The choice of the dimensional units for the J function is completely

•	 arbitrary insofar as keeping the process J - constant an invariant. For

such a dimensional change may be effectively accomplished by adjoining

-11-
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to the differential dJ arbitrary factors, without affecting the J - constant

process. In the present case when non-isentropic pressure variations are

considered, the simplest form will be obtained by ascribing to the variable

J the dimensions of pressure.

Dimensional considerations indicate that the function:

dJ . s 2 ` dp A] - dp
	

(3.2)

where s is a constant parameter having the dimensions of velocity fulfills

this requirement.* For the present, the form of the J function as given

in Equation (3.2) will be regarded as a definition.

It is now necessary to obtain some useful thermodynamic relations

satisfied by the thermodynamic variable J. Since the definition of entropy

of a perfect gas yields the equation:

dS = ^ - ydp
c^

the combination of Equation (3.2) with the above relation yields:

2	 2
dJ=-^ pdS - dp;	 dJ=-	 P+P. dS-1Edp

P	 p	 v

Hence, we obtain the three relations:

(3.3)

* See Concluding Remarks

-12-
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From the last two equations it follows that:

( )lari J	 (3.5)
P

Likewise, from Relation (3.2) one gets

	

lap/j = 
Yp + 0	 (3.5)

But, from the definition of the non-isentropic propagation speed a (Equation

(2.7)) given by

2 [_^,11
a,

pJ

it follows, using Equation (3.6) and routine thermodynamic relations, that

	

al + p .0. B

	
(3,1)

for a J - constant process.

Equation (3.1) indicates that the parameter a 2 tends to infinity as

the prdcess ' under consideration approaches an isentropic process in the limit.

This property will be confirmed in subsequent derivations by actually defining

the parameter 8 in terms of boundary values.

Again using the definition of the J function in Equation (3.2) the

following relation holds

	

dP 

_	 + Yp + 

I	 ] d

and, by using Equation (3.7), this becomes

a

13-
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Hence, using the first of Equation (3.4) it follows that

	

1 	 _-s a

or, using Relation (3.7)

	

ap	
- a	 (3.4)

s	 Yp

In a similar manner one deduces from Equation (3.8) that

2
OL	

(3.10)(4 8P

Consider the function G and its differential as defined in Equation (2.11):

	

G = - c  arttpOJ	 dG 
= [W) 

J dS + ati  S dJ

Combining the two it follows that

	

dG = - C"	 j dS- c^ ^^ dJ	 ( 3.11)

	

P	 JJ	 p a S

From the results obtained in Equation (3.4) this may be written

	

2	 e

	

dG =^pp dS + Pv dJ	 (3.12)

This last relation implies that

( 3G) _ a2P	 ( Rol	 Cv
lam/ J Yp a-3 , _Is p

Consider next the second of Equations (3.3)given by

-14-
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2
dJ - - p+a LdS-Ydo

Using Equation (3.7) it follows that

2
dJ - - a pc-- dS - 0- do	 (3.14)

From this result we obtain the relations

(

( ail _	 Yp , fail _ _ a2 p	 a 	 _ a2 p	 (3.15)
ap)S - p	 l )p	 CV	 (ap)J	 a C

It will also be useful to consider the pressure as a function of

density and the J-variable and subsequently let the density be a function of

J and S [this procedure was used to obtain the governing differential

Equation (2.19)]• A routine comparison of coefficients by invoking linear

independence yields the relations:

(^) J (aT) J
	(3.16a1

or

(), - 
(12 

(S ) J

In a similar manner

41 ) .' - 4), (-3'TP ) s + lff')p

-15-
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or

Is	 a 2 Ij 4z + (gyp	 (3.176)

and these may be easily verified by the use of Table I.

If we now consider the J-function definition and the combined first

and second law equation of thermodynamics, the.following relation is

obtained:

dJ
2

= T - c dS - c^dT	 (3.18)

p

Equation (3.18) results in the following relations:

^

ail	 (aTj	
2	 2

	

iS-
 cnp 

liJ=^ 
T -^	

t-giT=pT-^
	 (3.19)

P	 p	 p

Some of the above relations which may be useful for subsequent derivations

are collected in Table I.

SID 66-1441
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4.	 COMPARISON WITH EXISTING THEORIES

The derivation of the governing equation in terms of two thermodynamic

variables S and J and the subsequent definition of the J-function as

presented in Sections 2 and 3 respectively, makes it possible to compare the

derived equation with those of existing theories and show their equivalence.

Let us consider Equation (2.19) which was shown to be

D 2 - 
a
2 V 2

+ 
a 

Ien Hj Ds _ a2 
a 

(1A(*2H) aS

Û
	 ax e 	 1 i

_ ^ p
	

- a2 +	
P t°JI 

72J + f [tn( -K)) 
N

+

Dt	 l Ip  

a2	
'	

+
L tnt-a2Kj + c a	 t o	 aJ

,	 a x,^ a 	 a X
P

c	 au au.

	

+ +
 a ax' lTij) 

+ F	 - axj , X	 (4.1)

The functions N and K were defined in Equation (2.17) and were given by:

H= 1+ 171	 K=- (tea	 (4.2)`	 J	 `	 S

-18-
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However, from the relations involving the J-function in Table 1 we infer

that

"

^ ST 
H S2
	

+ p	 K- c v 	 (4.3)
Yp I	 p

Moreover, from Equation (3.8) these may be written:

2
H = 2 '	 K - c 

p	 (4.4)
a

Using these values of H and K in Equation (4.1), the following form is

obtained:

D 2S _

D	
a2v2S -	 (Zna2)

VT

s Dz	 ps J

2 a	 a2 + Y	 a	 a2	 aJ	 +
« a xj	 ( p	 a xi ( a }	 ax

C	
au

2 a l a	 ^'	 i 3 U
+ a ax [i p ax	 + F

	

.. ^ T^^	 ^ 	 - axe ax.1	 1

We can now divide this Equation by a2 noting that:

-19-
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1 D 2 S	 1 D	 2 DS	 D	 1 DS(a)	 =
-T 2 a 1T	 V7V ( -7 P,

1 D 
2 
J 1 D (gyp	

_
) DJ	 D 1 DJ

77-7 
D
	 p 3T^`	 1 	 tp)

2 a	 a2	 a	 a2	 Y	 (as)a ax	 ^n	
`pax • t p ); and`'	

a^
c	 ti	 ps	 J

Under these conditions, Equation (4.5) becomes

Vz 
^f l " o2S =	 (p^	 1 + l

am/ 	 P p
2J +

C a	 J
tau

s

_ 2 ll 	Y	 (( 2
axk [ p 1 + 6 axi tp) a 4

ai 

	 +

a	 1 a	
auk a^

+ s	 axe [p ax (Tij) +	 ax axe

Finally, the coefficient of the gradient of the J-function may be

written:

2	 2	 2

p, +^ax' (p)(7a))a z^	 1 +	 J p

(4.6)

(4.7)

(4.8)
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Hence, Equation (4.7) becomes:

D
+

1 ^S	 2	 v	 ^ fI 1  DJ 1	 a	 fI aS 1	 a	 aJr	 c	 1	 1

VT -
^^- v S - 7 P 

PZ

	

1p J	 a x j	 1+ l^1	 p
 

ax.
L	 s	 J	 .c

	

a	 1 a	
auk au

	

+ s	 ax, p 
ax ^Tij) + 1^	 ax; xj	 (4.9)

Equation ( 4.9) represents the final form of Equation ( 2.19), using the

thermodynamic J function as defined in Equation (3.2). It may be looked

upon as a convected nonlinear wave equation in a non - isentropic region in

which the forcing function is represented by the right-hand side of the

equation.

Alternately, in a formal manner, one could look upon Equation ( 4.9) as

a convected wave equation in a region in which the J function is propagated,

its forcing function being given by entropy generation, viscous effects,

body forces and velocity fluctuation. In this case it is convenient to write

Equation (4.9) in the alternate form:

(p 
VT

, + ax. 1 + (^)	
a2 aJ

	

k	 J p as x^

a?1 DS	 2	 a 1 a	 +	 - au' aui
s	 -	 -

c7 ^ a PT	 v s	 Y az' P ax. (T^^l ^4 ax. axe
t

(4.10)

-21-
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The last form of the equation is useful when a non - isentropic region is

imbedded within a larger region of quiescent fluid. This is obviously the

case when a large amplitude pressure wave is propagated into a quiescent

space by highly disturbed non-isentropic flow including moderate shock waves.

In this case the right- hand side of Equation (4.10) represents the non-

isentropic forcing function.

In the case when the J-wave propagated by Equation (4.10) is generated

by isentropic processes, the entropy derivatives vanish from the equation.

Also, the J-function varies as the negative pressure function since it was

shown that*:

((
aJl	 _1	 (4..11)

(	
a

pS

It will also be shown that, for constant entropy, the propagation speed a2

becomes the speed of sound a 2 in the limit.

Under these assumptions, Equation (4.10) takes the followl.ig form:

D2 2
 
t l	

_ a	 2 a	 1	 -
Dt	

r	
0 J	 c	 i[PO)L

auk au	
a	 1 a

	

S 
Y ax ax.- Y ax, 	 a axf 1T^^/ + F^	 (4.12)

*Refer to Table 1.

-22-
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Equation (4.12) is the differential equation derived by Phillips

(Phillips, 1960) with the entropy terms deleted. Lighthill's form of

Equation (Reference (1)) may be obtained by using isentropic relations

between the pressure and density functions (Phillips, 1960, also Ribner, 1962).

This derivation indicates the equivalence of Equation (2.19) to the

forms used in classical investigations of the aerodynamic noise problem.

It should be noted, however, that this equivalence holds true only when

isentropic pressure variations are postulated, as it is in the case of most

classical investigations. The present analysis which is aimed at an

investigation of entropy-producing regions with the inclusion of moderate

shock waves and their contribution to aerodynamic sound generation, puts

the emphasis on the dissipative terms of the equation. It assumes those

terms to be the main contribution to the forcing function of the wave

equation causing the propagation of a finite amplitude pressure wave.

-23.
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5.	 SOME ADDITIONAL ASPECTS OF THE GOVERNING EQUATION

The form of Equation (4.10) obtained in the preceding section makes it

apparent that one of the focal points of this analysis is the choice of the

form of the thermodynamic J-function, which allows one to draw an analogy

between the general form of the derived equation with those used in classical

studies of the aerodynamic noise problem. Moreover, it has been shown this

analogy exists only when isentropic variations of the J-function are allowed.

A more general approach to the problem, in view of the form of the

derived equation, seems to indicate that, in a region admitting an arbitrary

thermodynamic process having the form

J - j 
	

(5.1)

the propagation of J and S waves are mutually dependent so that entropy

generation causes a J-wave emission (and vice-versa) with additional contri-

butions to those phenomena being made by the viscous effects, body forces and

velocity fluctuations. In addition, the obtained Equation (4.10) is still

coupled to the remaining equations of motion. It would thus be useful to

consider the possibilities of uncoupling these equations by idealizing the

process to straight lines in the J-S plane, a procedure which would be

particularly suitable for the application of this analysis to the propagation

characteristics of a finite amplitude pressure wave. For it is feasible to

consider the two regions, a highly perturbed region with a possible

appearance of moderate shock waves which is imbedded in a region of quiescent

fluid, this second quiescent region admitting of finite amplitude acoustic

waves caused by the perturbed region.
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This idealization implies, basically, a far field noise analysis since

near field effects must admit a mixed J-S process taking place as represented

by Equation (5.1).

It is apparent from the previous analysis and the obtai ► ;:d results that

entropy changes would predominate in the perturbed region due to the highly

dissipative character of these processes (e.g., shock wave appearances). In

such a case the pressure and density functions would be primarily dependent

upon the entropy states of the fluid particles and the thermodynamic process

may conceivably be approximated by J-constant and S varying. In terms

of the previous analysis the differential equation governing such a

dissipative region would be given by

a' 1 . u	 1 DS- G 
q	 aui au •

cv VT a
	

S Y 
ax 

xj

- Y f '%X r 1 ax
. (, ij)  + F	̂ (5.2)

.t t, p 

In other words, in a region in which velocity fluctuations, viscous

effects and non-conservative body forces predominate, an S-wave is generated

whose propagation characteristics are largely determined by the non-isentropic

speed a. Moreover, in the presence of sudden discontinuities in the region

due to instantaneous velocity or viscous changes, entropy effects will also

be generated and must be considered as indicated by the form of Equation (5.2).

L ,; the other hand, when the quiescent region is considered, the

assumption of far field effects would also call for the additional stipulation

of isentropy. In this case, excluding the perturbed region from consideration,

the governing Equation (4,10) reduces simply to:

-25-
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1

D21 .fin [Ep-
 1	 ax .	 a2 ax .	

Y2n t
p 1	

= 0	 (5.3)
v	 [ 0 J	 ^.	 C o

Here, the fl,nctionai value of a2 tends to the isentropic propagation speed

a2 , as entropy changes approach zero.*

Finally, when both regions are considered simultaneously, with the

dissipative region playing the role of a forcing function propagating acoustic

waves into the quiescent region, the governing equation (4.10) takes on the

following form:

U2 [tn 

P—
	

- 
a	 a2 a	 to 

[p
	 a s? U	 1 DS _ o2S +

U	 ip pl	 ata -	 tpOJ	 cv

111i
 8u

YJ a [ 1 a (,ij) - F -	 + Y

It should be noted, finally, that in the more general case where no

simple assumption of two distinct thermodynamic regions can be made and

where the respective paths of the thermodynamic processes in the J-S plane

do not follow straight lines, as is conceivable in these extreme physical

conditions, the analogy between Equation (4.10) and that derived above cannot

be drawn a pni.o&i.

*See Section VI.
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6.	 THE PROCESS J = CONSTANT

In accordance with the preceding derivation, the region in which

dissipative motion predominates will be approximated by the thermodynamic

process J=constant. This region, in which entropy variations predominate,

permits thermodynamic variables which are, by hypothesis, functions of the

space coordinates and time through the medium of entropy.

Using Equation (3.6) it is inferred that

_p _ 1

	

a 	 Yp

Integration of this equation yields the pressure density relation for the

J=constant process:

1

p Y--T -7 p + A pY	 (6.2)
s

with A being the integration constant (Figure 1).

Coupling Equation (6.2) with the entropy equation for a perfect gas

^	 S-S
p = pYB exp -	 (6.3)

P

where B is a constant, yields the pressure as a function of entropy for

the process:	 Y

S-S
P =	

YY1 B s
2 exp - e	 - 

B	
(6.4)

p
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Let pi and pi refer to the isentropic values of these functions

when S = Si (i a 0,1) respectively. Under these conditions the constant

B is determined in terms of either initial or end conditions (Equation (6.3)).

From the condition that

P = p0 	when	 S = S 0 	(6.5)

the constant ratio 
B 

in Equation (6.4) is also determined. The resulting

expression for the pressure function takes on the following form:

Y

-

P = p 0	 ( Y-i) 
a 2
2	

exp	 - s s
o )- 

1	 + 1	 (6.6)

	

a0	 p

Here a0 is the isentropic propagation speed when S=S O . The constant

pararrPter 
S2 

is now evaluated from the condition that p=p 1 when S=S1

at the end of the process

2	 Y-1

a0	 p1 Y - 1

2^ 0
S =	

p	
(6.7)

S1-SO

[exp -	 C	 - 1
P

It may be shown in a specific application* that, when no entropy pro-

*For moderate shock layers, the numerator and denominator of Equation (6.7)

are expressed in terms of the upstream Mach number Mo. Setting M 0 = 1+E

it is 1cound that, as c -► 00, ct̂im 2 = 0 `- 7^ i.e., as S1 , S0,

s2 -► - 00 (see Section 7). ` c

.2g-
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duction occurs, i.e., when S 1
 
-0-S 0  in the limit, the value of the parameter

s 2 tends to minus infinity in the limit. This property makes Equation (6.1)

	

isentropic when	 S 1 -► S0 , as expected.

On the other hand, once a non-isentropic, J =constant process takes

place, i.e., S 1 > S 0 , the paramt - s 2 becomes finite. Under these con-

ditions its existence and constancy serve to underline both entropy production

and irreversibility of the process. For once the parameter s 2 becomes

finite it reflects the process of entropy production and its constancy

determines the irreversible character of the event.

To evaluate the density A as a function of entropy for the process

J = constant, Equations (6.3) and (6.6) are used to yield:

1

	

2	 S-S	 S-S
P = a0	 (Y-i)	 exp - c 0 - 1 + 1	 exp - c

	
(6.8)

	

a0	 p	 p

Equation (2.1) combined with Equations (6.6)and (6.8) yields the

temperature T as a function of entropy for the process J=constant.

	

2	 S-S	 S-S

	

T = TO	('r-1)-	 exp - 
c 

0	 - 1 + 1 exp( c 0	 (6.9)
	a 0	p	 p

It is apparent from Equation 06.91 that, as the entropy S tends to

S 0 , T tends to T0 , which is the isentropic value of the temperature

function.* In a similar manner, when S tends to S 1 , T tends to T1.

These can be readily verified by using Equations (6.3), (6.7) and (6.9)

S	 '

	

*Note that, as S-S O -► e, 62 = 
0 \ 1	

-S
1, and exp - 1 0 	 O(E3)

e J	 ^p
(See Section 7).
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The preceding derivations allow the determination of the non-

isentropic propagation speed a 2 as a function of entropy. Using

Equations (3.8), (6.6) and (6.8) it is apparent that:

S-S
(Y-1) s2 exp -	 0 - 1 + a2

a2	 p a	 (6.10)

S-s)

	 a
Y exp	 -	 0-1 ++ 1

 s

The non-isentropic propagation speed a2 is plotted for different entropy

production values in Figure 2.

In the limiting case when S tends to S0 , a2 tends to the

isentropic propagation speed a 0 , as indicated by the form of Equation

(6.10).* Here it is of interest, however, to consider the value of the

propagation speed a = a  when S = S 1 , i.e., at the termination of the

non-isentropic J=constant proces"s. To this end, Equation (6.10) is written

in the form

	S -S
	

S,-So) + a`
(Y-1) exp	 - 1 e 0	 - 1	 +	 exp	

- c 
	

_T_

	

P	 p	 B

Equations (6.3) and (6.7) are then used to obtain the following

substitutions:

1
/pi \\1-Y a^

	 S ' -So
1 p 1	

= a [exp - c	 (6.12a)

\ 0	 a0	 p

*When no J =constant process occured, i.e., when js2I
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Figure 2. The non-isentro pic Prooaaation Speed a vs Entropy Applied
to Shock Laver Transition Flow

-32-	 SIB 66-1441



NORTH  AMERICAN AVIATION, INC. 	 HPACE and INFORMATION BYSTBM9 DI VIRION

and

1
S ..S	 a2

	 fl
1-Y

(Y-1) exp -	 0	 - 1	 s

—^— (PO) 1

	 (6.126)

P

Under these conditions Equation (6.11) simplifies to

2
2	 al

a 1	1	 (6.13)

1 + s

In this case, however, the parameter 
s2 

is finite, since a non-

isentropic process took place. Thus the propagation speed at the end of the

process does not reduce to its corresponding isentropic speed, but is

modified by a factor 	 1

a2
l+ -

s

It will subsequently be shown that, for small entropy changes, this factor

is close to unity.*

It appears from the above considerations that when a process

J=constant occurs in which entropy changes predominate, the thermodynamic

variables (p, p, T, a 2 , etc.) are functions of the history of the process

rather than the instantaneous values of the state of the fluid particles

(note the reference to S0 as the initial state to which all values of the

*For large entropy variations ( M > 5.0) the above statement does not hold.
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variables are referred). Moreover, whereas all functional values of the

pressure, density and temperature are continuous at the boundary of the

region in which the process takes place, this is not so for the derivatives

of these functions.

For it is noted that all functions take on their isentropic values

on the boundary of the region, excepting the propagation speed a, which

differs from its isentropic counterpart at the termination of the process

by a factor which is directly dependent upon the amount of entropy production

during the process and tends to unity as the entropy production tends to

zero.

It then formally appears that a non-isentropic region may have a

discontinuous boundary due to a difference in the propagation speeds when

it adjoins an isentropic region. However, the functional values of the

thermodynamic variables are not discontinuous.

7.	 THE CASE OF MODERATE SHOCK WAVES

The preceding analysis lends itself to simplification when the

entropy production region under consideration is the region of a moderate

shock wave.

To evaluate the functional variations of the thermodynamic variables

i.- the shock layer as a function of entropy production, it is convenient to

evaluate initially certain recurring expressions appearing in the preceding

analysis and given by

/ p 1 1 -Y _	
sl-SO

p	
1	 exp -	 c	 - 1	 ;	 s

2
; etc.

4	 p
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Here state zero-denotes the value of the variables in front of the

shock layer, and state one refers to their value behind the shock layer.

From the shock transition equations it is evident that

Y-1	
Y-1

(p, Y	 1 2YM64.Cn26 - (Y-1)	 Y

0(	 Y	 1

1

ex	
S1-SO 

s	
(Y- Nm64kn28 	 Y + ]	

Y

p	 -	 (7.3)
p	 ( Y -1) MOein e + 2	 2YMOa.i.n e - ( Y -1)

p 1	 ( Y+1)M?..n26
—s
P0	 (Y- 1)m2.6in e + 2

Let us consider the value of the parameter 6 2 . It is apparent

from Relation (6.7) that

Y-1

a2	 2YM2 ina	 - (Y-1)
Y+	

l	
-1

6 2 	 /	 (7.5)

( Y+1)M6hin2 e	 Y + 1	 Y
]

(Y -1) MOa.i.n 8 + 2	 2YM
0
 e.i n e - ( Y -1)

In the limit, when S 1 tends to S0 , the normal component of the

Mach number upstream of the shock layer tends to unity. Consequently,

Equation (7.5) may be evaluated it the limit by setting

Mein2e = 1 + c	 (7.6)

-35-	
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Following this procedure it can readily be shown that:

1-Y	 .

-1 )c
(^—O )11
	 2 

(YY- 
2( YY1

1
E 2 +	 i7.7a)

 \ J

exp
S1

-S^
 - 1	

2 (Y-1) c
3 +	 (7.7h)-

Cp	
(Y

and

p]	 _	 2	 2	 2	 4 (1+2Y) 3

Hence, as S1 -). S09 i.e., as c approaches zero (to the first approximation)

S 1 -+ S 0	e -+ p	 -3a0 [YY
	 1	 -7 _ -
	 (7.8)

C

This is the condition which makes the 1-constant process isentropic in the

limit, in accordance with previous derivations [see Relations ( 3.8) and

(6.7)].

The parameter B2 is plotted as a function of Mach number for a

given shock transition process in Figure 3.

In a similar manner, using the shock transition relations, the

values of the functions p and p versus entropy are plotted in Figures 4

and 5.

It should also be noted that most of the derived relations for

pressure, density, etc., contain the factor

-36-
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S,-S^
E a 62
	

exp -	
c	

- 1	 (1.9)

 )p

Now in the limit as S, tends to S o , the parameter a 2 tends to

negative infinity as r- 
I	

[see Equation (7.8)], whereas the second factor
\\ E

in Equation (7.9) tends to zero as ( -E 3 ) [see Equation (7.1)]. Hence, the

total expression in Equation ( 7.9) tends to zero when S, ^ S 	 (and

S	 S,) as expected.

The following important consequence of the above derivation should

be noted. Even when a small entropy change occurs d ,.A ng any arbitrary

process, the non-isentropic effects cannot be arbitrarily disregarded,

for it could be reasoned that, even for the case of weak shocks, the entropy

variation is of a third-order magnitude, and therefore its effects could

conceivably be disregarded. On the other hand, the present theoretical

considerations point to the fact that this reasoning may not be jLstified.

This is due to the fact that, even though the entropy variation is ^f a

third-order magnitude, its product with the process parameter 
s2 

varies

as a first -order magnitude [Equation (7.9)]. Thus, all the functional values

of pressure, density, temperature, etc., in the non-isentropic region also

vary As a first-order magnitude. Moreover, the differential equation

governing the aerodynamic sound generation, as derived in Equation (5.4) has

also first-order variation of the non-isentropic terms. Consequently, the

contribution of the non-isentropic terms cannot be disregarded within the

framework of this analysis and the . entropy production terms must be taken into

account even for small variations of the entropy . functions in the process

considered (e.g., weak shocks).
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II. ENGINEERING APPLICATION

8.	 INTRODUCTION

A simplified engineering model of the propagation characteristics of

a finite amplitude pressure wave in high-speed flow with moderate shock wave

formation is presented in the subsequent sections. The actual computations

of the results were based initially on a previous model (Peter and Li, 1965)

in which only non-isentropic changes of the pressure function were con-

sidered, since at that time some of the results of the present analysis could

not be incorporated into the computer programs.* Nevertheless, the basic

characteristics of the derivations are similar in both cases and serve to

illustrate some physical aspects of non-isentropic forcing functions in

aerodynamic noise generation.

In accordance with the theoretical aspects of the preceding analysis

an entropy-produc-ng region imbedded in an isentropic medium will produce

acoustic excitations in the far field. In the rear field a mixed J-S process

takes place** with a resulting entropy wave emission. The near field mixed

process will not be considered here. Emphasis is placed mainly on the

effect of finite amplitude wave propagation into a quiescent isentropic

region.

* The only difference consists in the Mach number dependence of the wave

•	 amplitude. This adds a constant factor to the decibel count of the

resulting intensity.

** See Section 5.

-41-
SID 66-1441



NORTH AMERICAN AVIATION, INC.	 SPACE and INFORMATION 14YHTEMS DIVISION

The governing equations for the propagation phenomena have been

derived in Equations (5.2) and (5.4)'. Equation (5.2) indicates that non-

conservative effects of fluid motion, i.e., rotational velocity fluctuations,

viscous effects and dissipative body forces cause an entropy wave propagation

in the perturbed region. Equation (5.4) indicates that, when the perturbed

region is imbedded in an isentropic quiescent medium, an acoustic excitation

of the quiescent region also takes place.

In the present engineering approach the thickness of the transition

layer is disregarded and a discontinuous jump in the value of the forcing

function is assumed. The time dependence of the forcing function enters

through a series of disturbances caused by random distribution of impulses

imparted to the shock layer. An order of magnitude analysis indicates

that entropy contributions to the forcing function predominate while velocity

f	 fluctuations are of second order magnitude even for the case of weak shock

waves. Their effect on the forcing function seems to be indirect by impart-

ing initial excitations to the entropy function and thus triggering the

mechanism of emission.

9.	 ENGINEERING REPRESENTATION

In accordance with the preceding discussion, the governing differential

equation will now be applied to analyze the propagation characteristics of

moderate shock layers in supersonic nozzle flow.

It was shown in Section 5 that the equation representing non-

isentropic wave propagation into a quiescent region is given by:

-42-
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D2

- a 2	 a 	 (p_enDDt Can	 0
1p J J ax. a0 	 ax .	 p I0.c .c

= 1	 a
02

(
US _ s 2 v 2 S	 -

a	 1	 a	 (T ..)	 +	 F .
C 

Vt OL Dt ax.. p	 ax .	 c^	 c

au . au .

+7
ax

a.f 4-
(9.1)	 1

The case of a shock layer is now considered. To do this it is

necessary to specify the right-hand side of Equation (9.1), particularly the

entropy function and its gradients. A rigorous functional evaluation of

these variables cannot be accomplished, however, without solving simultaneousl

the remaining equations of motions [see Equations (2.1) to (2.4)] with

which Equation (9.1) is still coupled. To circumvent this difficulty it

will be necessary to represent the J-constant process as if it is taking

place in a region of zero thickness, so that a sudden discontinuous jump in

the dependent variables across the shock layer occurs. This representation

ascribes to the remaining equations of motion a cc , tribution whose maan

square value it even by the Rankine-Hugoniot relations. However, the

formal derivation of the governing equations has implied the existence and

continuity of the dependent variables up to and including second derivatives.

This restriction limits the analytical representation of the discontinuous

character of the dependent variables to those functions whose derivatives

admit analytical characteristics. For this reason generalized functions

-43-
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have been employed to represent the formalistic behavior of the Jump con-

ditions during transition. Their gradients become Dirac Delta functions

whose successive derivatives admit analytical interpretations.

It will be shown subsequently that this discontinuous character of

the dependent variables during the process of transition results in a radiating

acoustic dipole field.* The r.:idiating dipoles are distributed over the

shock layer and their local strength is pr1po ► tional in the mean to the

Rankine-Hugoniot transition values.

A notable simplification of the mathematical derivations may be

achieved by imposing upon the radiating field the condition** that the time

dependence of th? forcing function will enter-through a series of disturbances

caused by a-random distribution of impulses imparted to the shock layer.

The time derivatives of these impulse `unctions are multiplied"by mean

transition values which determine the amplitude of the propagated wave and

which may be regarded as slowly varying continuous time functions with

negligible gradients. As a consequence, the time derivatives of the impulse

functions may be neglected in the first approximation in view of the fact

that no time integration appears in the solution to the wave equation.

Physically, the assumption implies that mear, transition values of the

forcing function determine the amplitude of the emitted waves, whereas the

random time impulses supply the mechanism triggering the emission.

* Section 10.

** This condition is similar to that imposed on the forcing function used

in computations (Peter and Li, 1965, also Section 8).
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Under these conditions, Equation (9.1) becomes

lDD [ 

to J	 ax	 a0 8 X to ^^)]`D	 0	 .c C	 0

	

s2	 as	 s2 2	 'Iliaui
r c^ 

u^ 
axe a u1 ax; - v S + Y axe ax;

	

a	
1
	 a

` Y axe a ax; 
(T if) + Fr	 (9.2)

An order-of-magnitude analysis of the forcing function of Equation

(9.2) will now be conducted. In the first place, since the region of the

shock in which the 1=constant process takes place is represented by a layer

of vanishingly small thickness, the viscous term in the equation may be

accounted for by the jump across tt layer to which the action of the

viscous forces is confined. (It can be shown that the viscous terms in

such a discontinuous representation of the forcing function generate a

quadrupole radiation field which is of the next order of magnitude). In

addition, the body forces do not appear under normal flow conditions and

may be disregarded.

For the sake of convenience we will designate the remaining terms of

the function by Wi (i = 1,2,3)

	

L ( 8, 	 as
W 1 = u i axi a u

1
 ax

W2 a - 
$2v2S

au • aui
W3 = 

Y ax^ ax 
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It is evident that the two functions, W 1 and W2 represent the

contribution of entropy production to the forc ,inq function, whereas W3

designates the interaction of velocity gradients (fluctuations) and

rep^ •esents their contribution to sound generation. These mechanical velocity

fluctuations will now be shown to constitute a second-order magnitude when

compared with the entropy terms of the forcing functions, even for the case

of weak shock layers.

To that end, consider the case of one-dimensional flow and transform

the term W 3 by the use of Equations (2.2), (2.13) and (4.4) to obtain

(4.4) to obtain

Dui au •	
s2 DS	 e2 USa - a-1 = a PTa	 (9.4)

where [ U; = U( x), 0, 0 ].

Equation (9.4) reduces to

ax; axe	
a ax

au • au .	 2
^.	 j ^ u s	 as 

2	

(9.5)

when mean intensity values are considered.

In the entropy-producing region, i.e., in the shock layer represented

by the process J=constant, the propagation speed a is of the order of the

isentropic sound speed a, for very weak shock layers.* Likewise, the

* Section 1.
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velocity U also approaches sonic speed* and is of the same order of

magnitude.

Referring now to previous derivations, it was shown** that

s2vS — 0(a2E)	 (9.6a)

2
T Vs — 0(c)	 (9.6b)
a

with e - ( M2 - 1) and such ** that e < < 1. It then follows that

2
U 7 S	 0(aoc)	 (9.7)

a

Using these estimates in the term UV. of the forcing function, as in

Equation (9.3), it is inferred that

W 1	 0(ao)

W 2 ^ 0(a2e  )

G13^. 0(a2e 2 )	
(9.8)

Thus• the present theory indi.ates that velocity fluctuations

(mechanical effects) in a non-isentropic region are of a second-order

magnitude when compared to the entropy terms even for the case of weak shocks

when entropy variations, pen 4e, are very small..

* From above

** Section 7.
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It should be noted, however, that such velocity fluctuations may

affect the non-isentropic sound generation indirectly by imparting initial

excitations to the entropy function, thus providing the triggering mechanism

necessary for emission.*

10.	 AN ACOUSTIC ANALOGY

An acoustic analogy is now constructed in order to evaluate the pro-

pagation characteristics of a stationary shock layer forming in the exhaust

of a fixed supersonic nozzle. The shock layer is regarded as a stationary

region from which acoustic excitations propagate into the surrounding

quiescent medium. The analogy disregards convective and dispersive effects

of the emission mechanism. On the other hand, the local entropy gradients

which predominate in this a alogy were shown** to be of a comparable order

of magnitude and represent a substantial part of the overall problem.

The differential equation governing this emis s ion process may be

put, in view of Equation (9.2) and the subsequent discussions, in the

following form:

	

2	
^lt-n lP
	

- anv2 ( .en 
tp

	

at	 o	 ^	 o)

2

	

-	 v2[A ( x)H(z-h ) j(t )]	 (10.1)
V

*	 See Equation (5.2)

** See Equation (9.8)
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Here the entropy function S has been written in the form discussed

previously

S a A(z)H(z -h)6 W	 (10.2)

It is noted that the spatial dependence of the entropy function is

represented by a product of an amplitude function A(z) and the Heavyside

step function. The amplitude function is proportional in the mean to the

transition values of entropy. Its dependence upon spatial coordinates is

introduced here to take into account thermodynamic non-equilibrium flows in

the region (e.g., curved shock layers).* For constant curvature shocks the

amplitude function depends upon the constant normal component of the upstream

Mach number. The present investigation will concentrate largely on the

latter case.

The shock surface is represented by the equation

z - h(x,y)	 (10.3)

The spatial dependence in Equation (10.3) will imply axial symmetry.

In actuality the shock layer structure in underexpanded supersonic

nozzles admits, in certain cases, of a slight curvature before the onset of

the Mach disc (Peter and Kamo, 1963). However, in the preSEA formulation,

the curved effects will introduce unwarranted complications due to the non-

equilibrium character of the flow behind the shock layer at the end of the

non-isentropic process (i.e., spatial entroi)y gradients). For in this case

the process parameter s2 will not retain its constant character stipulated

* It cap be shown that such non-equilibrium flows make the thermodynamic

parameter a2 space-dependent.
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here unless its average value is used. Moreover, conical structures with a

possible Mach disc superposition should afford a good approximation, which

becomes exact in many cases.

Under these conditions, the total amplitude of the emission is seen

to depend upon the product ( s2 A)independent of spatial variation, with

the upstream normal Mach number appearing as a flow parameter.

The time variation of the entropy function 6(.t), representing an

impulse-disturbance imparted to the 1=constant region, will be kept in a

gereral form

	

^() _ f	 r(w) 
ads,	 (10.4)

_m

where r (w) is the Fourier transform of J (.t) .

The solution of Equation (10.1) slay now be written

2

	

tn 
lN^!	

—7f 2	 : (w) a-iwtdm

	

0	 ^n a0

:, 
w n. 
a

x	 e	
0	

v2 [H(z-h)ldv	 (10.5)
it

The integration is taken over the region of the disturbance.*

* Here the radius n is defined in the usual manner x = 	 - zj;

= observation point coordinates; z - perturbed region coordinates. 	 .
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r

Let us consider first the simplest case of a normal shock layer

located at some point z - h 0 , where h0 = constant. Under these conditions

the term v2H becomes a derivative of the delta f unction 6(z-h0) with

respect to z. As a consequence, Equation (10.5) may be written(using

the properties of the delta function):
co

tn (( -_ll
A
	

2	 a0

	

1^1	 I	 r (w) 
e-^ I^t	

8z a
	 cia	 (10.6)

	

0	 fn a0	 n
z=h0

co_

The integral is taken over the surface a over which the disturbance takes

place.

It is evident that the obtained solution represents a radiating dipole

field located at z = h0 . The radiating dipoles are distributed over the

shock layer emitting pressure waves whose amplitude is proportional to the

transition values of the product (As 2 ). The product determines to the

first approximation the dependence of the acoustic intensity of radiation

upon the upstream Mach number. From previous considerations it is readily

deduced that:
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1-!
ao	 2YMj44A 8 - (Y-1)	 Y

- 1

Y-1	 Y+1

As 2 =	 X
t

(Y+ 1) M20e.i n2 e	 Y + 1	 Y

( Y- 1)M04,in 8 + 2	 2YWO,&in2e - (Y-1)

-Y

2YM2a6.i.n2e - (Y-1)	 (Y+1) Mi2e
X .en	 (10.7)

Y + 1	 (Y-1)M20ain28 + 2

Here, MO,6i,ne denotes the normal component of the Mach number to a shock

layer inclined at an angle 8=constant.

Equation ( 10.5) will now be generalized to include shock layers of

an arbitrary shape. Thus we let the shock layer surface be given by the

equation

F1(x,y,z) - *0 *	 (10.8a)

where ^1 denotes a family of given surfaces and o 1=constant is that

particular surface which defines the shock layer.

This equation may also be written z - 6(x,y) - 0, on the shock; z - S -con-

stant, otherwise.
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For convenience we define two mutually orthogonal families of

surfaces by

F2 ( X.Y, Z ) _ *2
	

F3(X,N,Z)	
3	

(10.861

which are orthogonal to Fi = ^1

Equation (10.5) is now transformed to the curvilinear coordinates

[i=1,2,3]. It should be noted that these coordinates refer only to the

perturbed region defined by the vector z and not to the point of observation

which is denoted by the vector. Equation (10.5) is now written in the

form:

00

2

	

.fintP^ =-_ A	 r( w 1 e
-i" tdw X

0l	 8Tr	 a0

Gt9*,t1a2
LH 

'-*©)Jh1h2h3 d^'d> 2d> 3 (10.9)

.^ ci n
0

n

is a function of t and the vt's.

a(X,y,Z)
h 1 h2h3 =

a(^,v,^)

(10.10)

(10.11)
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represents the Jacobian of transformation. the h-'s(i = 1,2,3) represent

the metric coefficients of the curvilinear system.

In terms of the coordinates ^4 it is evident that

	

©2H =
	 i	 a	

h2h3	
aH	

(10,12)h W a

since H = H(* 1 ) only. Thus, Equation (10.9) becomes

0

l	 2
1 = -	 r (.) 

e-.iwtd X

0	 8,r	 a0

_m

hh
X f( ,^)	 a	 2 3 aH	 di, 1 d*2d*3 (:0.13)ff a1 h a^

Noting that

-f CHILI 
-1V0 ! ( = a(* 1 -* 1 )	 (10.14)

and using the properties of the delta function, Equation (10.13) takes on

the following form:
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m

2

^ —, _ r'1'	 r (w) e^' dw X
p0 	8Tr	 x©

4 
w 

n
a0 	 h h

X	 a	 e	 2 3 d*
2 d> 3	 (10.15)

ff'.

	
n	 h1

If we denote the linear increments along the curvilinear coordinate

lines by d .(i = 1,2,3) so that

dk - = h `d*4

Equation (10.15) can conveniently be written in the form
00

to (p-	
2	

r (w) e-^dw x
1p0j	 82 2

0
_W

^. a
0 n

X	 2	
a	

de de(10.11
.c	 n

^Ij 1=*
0
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This last equation clearly defines a dipole radiation field generated

by a shock layer whose form is represented by the surface *0 . It is noted

that the dipole axis pointing in the Direction of t  is normal to the

shock surface. It is then of immediate consequence that the maximum

intensity of radiation of a supersonic nozzle in the presence of shock

waves will tend, in the light of the present theory, to be normal to the

shock surfaces. Thus a conical shock whose angle with respect to the jet

axis is 45 0 will radiate sound whose intensity will tend to be maximum along

the 45 0 axis of the jet. Since most shock layers in underexpanded supersonic

nozzles lie in the range of 30 0 to 60 0 inclination, it appears that the

maximum intensity of radiation will tend to follow this pattern.*

It should be noted that the resultant field of radiation is symmetric

with respect to the plane passing through the origin and which is normal to

the axis of the jet. This is due to the fact that the supersonic state of

the conditions prevailing upstream of the shock wave were disregarded in this

analogy. As a matter of fact, backward radiation will be impeded by the

upstream conditions to an extent which cannot be envisaged from the present

development. A more accurate picture of these effects could, it is hoped,

be obtained from the effects of the terms disregarded here but-appearing in

the governing differential Equation (9.1).

*See Section 11 for a more complete discussion of conical shock propagation

characteristics.
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It should also be noted that additional sources of radiation appear

in actual supersonic nozzle flow which could be, but are not, treated by

•	 the present approach.	 For instance, at the termination of the shock at the

boundary of the nozzle flow a rinc f radiating dipoles appears whose axis

is directed along the shock. Consequently, additional radiating sources

appear due to the tangential entropy difference between the terminating shock

and the surrounding medium. These effects, which must be treated separately,

will not change the present directionality and propagation characteristics to

a large extent due to the orders of magnitude of the respective surface areas.

The appearance of Mach discs in the flow could be treated by super-

position but it is doubtful if more useful information could be obtained

without a rigorous analysis of the complete non-isentropic phenomena of

high speed flows. This is due to the highly idealized nature of the present

analogy. For instance, it is idealized here that the shock transition takes

place locally. In actuality, a succession of waves appears in the flow, but

due to their geometrical similarity of shape, which appears to be of a pre-

dominant importance in the light of this analysis, the total effect would

not be materially different.

This hypothesis does not seem to hold, however, when Mach discs

appear at higher Mach numbers. In this case, the successive shock formation

does not possess the geometrical similarity characteristics of shock layer

shapes. On the contrary, the successive shock waves which are distinguished

by their highly unstable characteristics, take the form of a fluctuating

cone. For this reason it is feasible that the idealization of conical shapes

could be extended to the propagation characteristics of transition layers, even

for higher Mach numbers, in spite of Mach disc appearance. In any case, a

separate basic investigatiorr of these phenomena seems desirable.
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11. THE CONICAL SHOCK LAYER

It was shown in the previous section that the radiation characteristics

of an arbitrarily shaped shock layer were described by the forcing function:

	

2	 ikh
Zn	 _	 r ( w) 

a-^.wx	
ate"' en	 d.^jdtk	 (11.1)

0 8n 
a  f	 ff i

where k = a0 is the wave number and the integral is evaluated at the surface

i = ry0.	 The subscripts i, J and k can take on any one of the values

between 1 and 3, but it is self-evident that i # j ¢ k. This notation is
more flexible since it allows the choice of any coordinate of the curvilinear

triplet as the shock surface.

In the particular case of conical shocks it is convenient to choose the

spherical coordinate system:

^ 1 = P	 2 = e	 V► 	 $	 (11.2}

so that the conical surface is represented by the coordinate *2= $o , where 8

is the value of the conical angle formed by the shock. Thus, referring to the

notation in Equation ( 11.1), it is inferred that i - 2, ,I t 1, and k = 3.

In view of the above definitions the shock region is represented by

the coordinates:

X = aa.i.ne cob o	 y = pe.i nee.i n#	 z it O CAA a	 ( 11 < 3 }

Using the above notation, Equation (11.1) takes on the following form

	

2	 .i.kn

	

Qn ' _ ^'f —'1'	 r(w}e- dw $
f a  e 

x : 
etneo dad4	 (11.4)

^o	 8n ao

One 
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Let the observation point	 also be defined in term of

spherical system of coordinates

C _

n=

Under these conditions the quantit,

{R
2
 * P

where

Rb.inycoa v

R6 ny,s inv

RcoaY	 (11.51

y n _	 - z( may be written

1
-	 cosa^'I	 (11.61

coat = eineainYcoa ( #-v) + roaeco4y	 (11.64)

It is now apparent that in the far field analysis the linear dimensions

of the shock layer are much smaller than the distance R from the origin to

the observation point, Thus Equation (11.6) may be expanded in term: of the

ratio p/R

n = R [ 1 -	 cobs *	 (i i. 7}

Consider next the integrand in Equation ( 11.4). The quantity x in the

denominator affects the magnitude of the radiated field but it has no effect

on the phase of the emitted wave, which is modified by the wave number k.

Thus, in the denominator, little error will be affected by replacing n with R.

We will write Equation (11,4) in the following form:

Ae2bine
tn	 r( )Qi(kR-'''t)d^,	 e ff ikocoaa I 

d4
	 (ii.&}

0	 8 aOR 

eved

and consider the expression in the bracket:

}	 I a 1 J e
-.ikacoea Odt	 (ii. f}
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which should be evaluated at e a e0 after the differentiation. Using

Relation (11.6x) for coso this may be written as

L	 n

I = 2e
	

a ck¢coaec0ay 0	
a 

.ikpa,i.nui.nycoa(^-v)dt
	 (11.10)

0	 0
Employing the integral form of the Bessel function representation, the above

expression takes on the following form:

f

L

I - 2,r ae	 ei cva e coa y JO (kpali.ne.6 i.ny) cO	 (i 1.11)

0

Performing the differentiation and setting e = e0 one gets

L
-.Cftp COa B Q COa y

i	 27r.i.ka.cne0c0ay	 a	 J0(KC-S ne0a .i.ny) C +

0
L

-.i.kpcoa e0coay	 _
-2akcoae0siny	 a	 i1 ( kpa.ene0,6iny) c(P	 (11.12)

0

Using these results in Equation (11.8) the following expression for the

forcing functions of the conical shock results:

i As
2ain2 e C04 	

W	
L -.tkpcoae cOaY f

^n ^l =	
0	

r(w)k 
ec(kR- )

t	 e	
0	 x

/	 ,r	 J_0	 ^ a0R	 W	 0

As2Ain2e0coaY 	 ^,(kR-u)t)

	

x 10 (kpa.tne L, .i;lY)pcp'-	 f r(.)k ¢	 c!w x

B,rct0R	 -W

x r
L -.Lkpcoae cOaY	 _	 _

¢	 0	 J^ (kPa^i.ne pa.i,nY) P dp~	 (11.13)	 .
0
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Equation (11.13) represents the forcing function of a conical shock layer

radiating acoustic pressure waves into the surrounding quiescent region

subject to the simplifying assumptions of the present analogy. The angle of

the cone with the z-axis of the coordinates is represented by e = e 0 . The

length of the cone is represented by the radial coordinate p such that:

0<p<L

where L is the total length of the layer measured from the origin along the

conical surface. The diameter of the shock is given by:

d = 2—p.6ine 0	thus a = 
Mine 

U being the aaximum shock diameter which is assumed to be of the order of

the nozzle diameter unless more exact measurements are obtainable from

experiments.

Equation (11.13) is plotted in Fig. 6 and 7 showing constant intensity

lines to- a ,umber of frequencies.

In addition, simplified computer runs for the case of paraboloidal

shock layers were performed using average constant values for the process

parameter a 2 . These are shown in Fig. 8.

The obtained results indicate that, for low frequencies, the directionality

tends to align itself with the jet axis, whereas the higher frequency contri-

butions swing aw^ from the axis and tend to be normal to it (e.g., shock
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layer with e 0 a 25°. see Figure 6). A similar trend is noted in the case of

eo - 450 , even though, in this case, the maximum high frequency directionality

tends to but does not reach 90° (see Figure 7). The same trends hold true

for other shock shapes (Figure 8).

As mentioned previously,* the overall intensity of radiation tends

to a maximum in the directions normal to the shock layer. Noting that for

the relevant range of Mach numbers the shock angles vary between 30 0 to 600

approximately (excluding Mach discs), it is to be expected, in the light of

the present theory, that the maximum intensity will tend to occur in the

same range with respect to the jet axis.

* Section 10
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Figure 6a. Polar graphs of lines of constant intensity in the nois4-

field of a 25° conical shock showing the frequency dependent

directionality.

k = a varies between .2 and 2 (cgs units)
0
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of constant intensity in the field of a 25° conical

shock.

k = a varies between .2 and 2 (cgs units)
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Y =90°
	

Y=
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Figure 7a. Polar graphs of lines of constant i .ntensi_ty in the noise

field of a 45° conical shock showing the frequency

dependent directionality.

h, = ci varies between .5 and 5 (cgs units)
0
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line of constant intensitv.
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12.	 THE TRIGGERING MECHANISM

The attempted theoretical treatment of non-isentropic flow

characteristics makes it feasible to offer snore initial speculations con-

cerning the causes and effects of the mechanism triggering wave emission

from the entropy-producing regions. In accordance with the present

derivation, b,i entropy-producing region is governed by a non self-adjoint

(i.e., non-conservative) hyperbolic partial differential equation. As a

consequence, an entropy wave is propagated into the dissipative region

whenever a perturbatioli appears on its boundary or within the region itself

(non-homogeneous ca:,a). The stipulated growth of the propagated wave is

assured by thn second law of thermodynamics which determines the direction

of the process. Incidentally,-it may be readily verified that, when a non-

distorted propagated wave pattern is assumed, calling for linearization

of - and the vanishing of first-order derivatives from - the equation

(self-adJoint form), isentropic flow conditions are implied, for in this case

the propagation speed a = a(S) must be constant.

It is now apparent that, in the light of the present theory, the

behavior of such entropy-producing regions will be determined by the

dissipative effects within this region and the excitations imparted to it

at the boundary. In the present approach of shock layer application when

the thickness of the region tends to zero the boundary effects.would tend

to be predominant. As a consequence of these effects, there seems to be a
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marked distinction between shock layers (regarded here as entropy-producip9

regions) formed by a supersonic motion of a solid in an unbounded medium

and those formed in the exhaust of a supersonic nozzle. For in the first

case when alinost uniform conditions prevail upstream and downstream of the

layers, their infinite extent in the remaining directions tends to suppress

any possible excitations from these sources. On the other hand, shock regions

formed in the exhaust of supersonic nozzles have to contend with the con-

ditions of the free boundary at the termination of the layer in addition

to its upstream and downstream perturbations. Thus, for supersonic-exhaust

conditions potential instabilities are formed in the.presence of any

dissipative effects (e.g., shear layers, velocity fluctuations, vorticity,

etc.), but the shock layers represent a first-order magnitude in comparison

with other sources, which in turn enhance their instability by appearing at

the free boundary where these shock layers terminate. It should also be

noted that the same unstable characteristics occur in a moving rigid body

when boundary-layer shock interactions take place, since the effect of rigid

boundaries at the extremities of the shock are effectively counteracted by

the fluctuating medium.
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In the present engineering approach, the characteristic input of the

boundary excitations -is represented by a series of randomly distributed

impulses imparted to the ;hock layer. The actual physical nature of these

impulses is both space- and time-dependent, but their random characteristic

fosters the belief that ergodic-theory application would be a justification

to represent them in terms of any one of these iUdependent variables. As

a consequence, a time-dependent behavior is used in the present approach.

Intuitively one could expect the Fourier transforms of these impulse

functions to reflect different probability characteristics for different

frequency bands into which these impulses are decomposed. It is thus

feasible that the characteristic Fourier transform should also be a

statistical aggregate of random impulse functions acting upon the shock

layer. Accordingly this characteristic Fourier transform could hopefully

be expressed as-a frequency dependent probability distribution. From

heuristic considerations such a distribution should tend to zero for large

requency values to effectively ensure the existence of the Fourier Integral.

It is felt that a separate, more rigorous investigation of these

initial conditions is needed in future developments of the subject matter.

However, for the present application, a simple representation of the

characteristic impulse function will be employed. Thus, the respective

distribution has been assumed for

0<w<w0

to be equal to unity.- This implies that the function r(u)1, in terms of

which the time-dependence of the forcing function has been written [Equation

(10.4)] is equal to unity.	 There,+ftsr the transform is chosen to fall off
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as 
W-0 

as w grows large. This choice effectively prevents the divergence

of the Fourier integral for large values of frequency, even though it is by

no means unique.

Based upon the above model, it was found from the computational efforts

that the overall behavior of the resultant theoretical curves could be

correlated with experimental data in a straightforward manner with a single

exception. Namely, in all cases the frequency spectrum of the theoretical

results had to be shifted by a constant factor. This could be expected due

to the employment of the present acoustical analogy in which convective

effects and the Doppler shift were not included.*

Employment of the above model for the disturbances triggering non-

isentropic wave emission completes the overall theoretical representation

of the forcing function governing the acoustic propagation of shock layers

as derived in Section 10. The computation of power spectral densities of

the resulting noise field were accomplished by the application of random

noise theory.** The choice of the Poisson distribution as a representative

probability function for the successive occurrences of the emission phenomena

was decided upon.** A typical CRT plot of spectrum for the initial conditions

stipulated above is presented in Figure 9. From the results of the computation

it can readily be seen that empirical results also indicate the necessity of

the distribution to tend to zero for large values of frequency [see Figure 9

and Figure 11]. The plot represents a simulated run based upon Smith's Report

(E. B. Smith, 1966) for Y = 50°.

* Ribner, 1962.

** Rice, 1941, pp. 294-325.
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13:	 EXPERIMENTAL VERIFICATION

Correlation of the obtained theoretical results with experiments was

attempted by actual simulation of given nozzle and flow characteristics.

In certain cases conjecture had to be used concerning the shock structures

of the nozzle-under consideration, but whenever possible these were obtained

from personal contacts.* Thus, actual simulation runs were carried out

using appropriate values for shock layer angle, its diameter; upstream Mach

number, etc. The various flow parameters used in the simulation of Smith's

experiments are presented in Table II. The results of these theoretical

and experimental correlations are shown in Figures 10 to 12.

Two shortcomings of the present acoustical analogy became apparent

as soon as comparison with the available data for a . given simulation run

were made. In the first place, a shift in the frequency spectra of

the theoretical -computations was noted, its value being an absolute constant

for each nozzle simulated. Since the present analogy did not account for

convective and Doppler shift effects (Section 10) it appears that such

behavior of the computed results could be avoided by taking these into

account.

Secondly, it was found that the acoustic contribution of the

theoretical model tends to be overly exaggerated in the neighborhood of

the jet axis. The reason for this behavior may again be found in the

* e.g., Martin Co. report, Courtesy E. B. Smith.
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simplified character of the present analogy, since the attenuative

nature of this region is probably due to the effects of refraction

(Ribner, 1966) which were disregarded in the engineering computations.

On the other hand, the overall theoretical results and the characteristic

trends of jet noise phenomena seem to be closely following the general

pattern of experimental findings. From the simulation runs of Smith's

report the following facts may be noted.

a) In both the theory and experiment the directivity of higher fre-

quency contribution shifts toward 90° from the jet axis (Figure 10).

b) The computed results show, a directivity shift back towards a 650

angle from the axis for frequency increase above 3200 cps

(Figure 6b, K-2.0 plot). The experimental data of the report

indicate an identical trend, a 2.5 db intensity drop occurring

between 70 0 and 90° from the axis for center band frequency of

104 cps. [Smith, page B-3, Program Firinq #1].

c) The total relative theoretical intensity change (as a function of

the spherical angle Y) is computed to be of the order of 12 db.

The above characteristic and the actual decibel count are well

substantiated by the experimental findings (Figure 10).
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d) The experimental measurements of density spectra exhibit a

sufficicr'* number of data points to hkghlight characteristic

fluctuat lon^i of the curve in the higher frequency regions. The

computed values seem to analytically confirm this behavior

indicating it to be a characteristic Bessel function variation

(Figure 11).*

e) The computed spectral characteristics show a relative increase

of about 20 db/decade in the low frequency ranges. The measured

experimental values confirm the validity of the above result

(Figure 11).

f) The overall directionality characteristics of the theoretical

model show a marked correlation with the experimental measurements

(Figure 12).

A point of experimental controversy arises when the changes of

intensity with frequency are considered as a function of the spherical angle

Y. In Smith's report the directionality curves have the same bell-shaped

character, the maximum intensity varying with the frequency. On the other

hand, both the General Electric report (Lee, Smith, et al. 1961) and the

F-1 engine data** indicate an exchange of energy takes place in the range

* In correlating the spectral densities, a conversion from the 1/3 octave

band analysis used in experiments has been effected.

** Courtesy G. Wilhold, Unsteady Aerodynamics Group, NASA, MSFC.
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400 < Y < 900 . Thus, as the frequency increases, the maximum intensity at

about 400 decreases and that about 90 0 increases, the curve pivoting about

an almost stationary maximum value: The theoretical results of the present

model tend to support the latter but not the former trend
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TABLE II

Smith's Simulation

Shock Diameter ( D 	 4 cm

Shock angle	 (e	 250

Distance from Shock

R	 3756 cm

Exit Mach Number
	

3.5

Non-dimensional cutoff	 .6

frequency, 
wD

ra0
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CONCLUDING REMARKS

The preceding investigation of non-isentropic propagation phenomena

was motivated by the desirability to represent in an analytical manner the

contribution of dissipative regions to aerodynamic noise generation. An

engineering application of this analysis is reflected in the concept of an

EPN (extended plug nozzle) device. Its function is to modify entropy-

produci6g regions (shock waves) in order to attenuate noise generation of

of high-speed nozzle exhausts. In the present study a mathematical model is

formulated and analyzed for some specific cases to determine the noise

generation characteristics of supersonic nozzles. For these specific cases

existing test data appear to correlate well with the theoretical results.

As it is in most cases, the present approach is based upon a rather

simple basic idea which may have a tendency to become lost in the techni-

calities of the derivation. Its essence is the choice of independent thermo-

dynamic variables which would depict non-isentropic pressure fluctuations.

It may be readily seen that if, for instance, the pressure and entropy

be chosen as indeoendent variables, all pressure gradients become isentropic

and, as a consequence, so do pressure fluctuations. This fact seemed an

unwarranted restriction upon the physical ^.enomena taking place in entropy-

producing regions.

It should also be remarked that the choice of the thermodynamic J-

function was based upon physical aspects of the preceding analysis coupled

with dimensional considerations. The actual derivation of the J process

was obtained, however, from an analysis of convected entropy changes in

-87-
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equilibrium flows. This latter alternate approach has not been presented

here due to the initial stapes of its development and also to avoid

excessive complications of the present analysis. It is pelt, moreover,

that the scope of such a derivation warrants additional analytical efforts

in a subject which may be incidental to the propagation characteristics of

a finite amplitude pressure wave.
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