913 research outputs found
Vascular endothelial growth factor C disrupts the endothelial lymphatic barrier to promote colorectal cancer invasion
Background & Aims
Colorectal cancer (CRC) is highly metastatic. Metastases spread directly into local tissue or invade distant organs via blood and lymphatic vessels, but the role of lymphangiogenesis in CRC progression has not been determined. Lymphangiogenesis is induced via vascular endothelial growth factor C (VEGFC) activation of its receptor, VEGFR3; high levels of VEGFC have been measured in colorectal tumors undergoing lymphangiogenesis, and correlated with metastasis. We investigated VEGFC signaling and lymphatic barriers in human tumor tissues and mice with orthotopic colorectal tumors.
Methods
We performed immunohistochemical, immunoblot, and real-time PCR analyses of colorectal tumor specimens collected from patients; healthy intestinal tissues collected during surgeries of patients without CRC were used as controls. CT26 CRC cells were injected into the distal posterior rectum of BALB/c-nude mice. Mice were given injections of an antibody against VEGFR3 or an adenovirus encoding human VEGFC before orthotopic tumors and metastases formed. Lymph node, lung, and liver tissues were collected and evaluated by flow cytometry. We measured expression of vascular endothelial cadherin (CDH5) on lymphatic vessels in mice and in human intestinal lymphatic endothelial cells.
Results
Levels of podoplanin (a marker of lymphatic vessels), VEGFC, and VEGFR3 were increased in colorectal tumor tissues, compared with controls. Mice that expressed VEGFC from the adenoviral vector had increased lymphatic vessel density and more metastases in lymph nodes, lungs, and livers, compared with control mice. Anti-VEGR3 antibody reduced numbers of lymphatic vessels in colons and prevented metastasis. Expression of VEGFC compromised the lymphatic endothelial barrier in mice and endothelial cells, reducing expression of CDH5, increasing permeability, and increasing trans-endothelial migration by CRC cells. Opposite effects were observed in mice and cells when VEGFR3 was blocked.
Conclusions
VEGFC signaling via VEGFR3 promotes lymphangiogenesis and metastasis by orthotopic colorectal tumors in mice and reduces lymphatic endothelial barrier integrity. Levels of VEGFC and markers of lymphatic vessels are increased in CRC tissues from patients, compared with healthy intestine. Strategies to block VEGFR3 might be developed to prevent CRC metastasis in patients
Population screening for colorectal cancer by flexible sigmoidoscopy or CT colonography: Study protocol for a multicenter randomized trial
BACKGROUND: Colorectal cancer (CRC) is the second most prevalent type of cancer in Europe. A single flexible sigmoidoscopy (FS) screening at around the age of 60 years prevents about one-third of CRC cases. However, FS screens only the distal colon, and thus mortality from proximal CRC is unaffected. Computed tomography colonography (CTC) is a highly accurate examination that allows assessment of the entire colon. However, the benefit of CTC testing as a CRC screening test is uncertain. We designed a randomized trial to compare participation rate, detection rates, and costs between CTC (with computer-aided detection) and FS as primary tests for population-based screening. METHODS/DESIGN: An invitation letter to participate in a randomized screening trial comparing CTC versus FS will be mailed to a sample of 20,000 people aged 58 or 60 years, living in the Piedmont region and the Verona district of Italy. Individuals with a history of CRC, adenomas, inflammatory bowel disease, or recent colonoscopy, or with two first-degree relatives with CRC will be excluded from the study by their general practitioners. Individuals responding positively to the invitation letter will be then randomized to the intervention group (CTC) or control group (FS), and scheduled for the screening procedure. The primary outcome parameter of this part of the trial is the difference in advanced neoplasia detection between the two screening tests. Secondary outcomes are cost-effectiveness analysis, referral rates for colonoscopy induced by CTC versus FS, and the expected and perceived burden of the procedures. To compare participation rates for CTC versus FS, 2,000 additional eligible subjects will be randomly assigned to receive an invitation for screening with CTC or FS. In the CTC arm, non-responders will be offered fecal occult blood test (FOBT) as alternative screening test, while in the FS arm, non-responders will receive an invitation letter to undergo screening with either FOBT or CTC. Data on reasons for participation and non-participation will also be collected. DISCUSSION: This study will provide reliable information concerning benefits and risks of the adoption of CTC as a mass screening intervention in comparison with FS. The trial will also evaluate the role of computer-aided detection in a screening setting. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT0173960
Finite size corrections to random Boolean networks
Since their introduction, Boolean networks have been traditionally studied in
view of their rich dynamical behavior under different update protocols and for
their qualitative analogy with cell regulatory networks. More recently, tools
borrowed from statistical physics of disordered systems and from computer
science have provided a more complete characterization of their equilibrium
behavior. However, the largest part of the results have been obtained in the
thermodynamic limit, which is often far from being reached when dealing with
realistic instances of the problem. The numerical analysis presented here aims
at comparing - for a specific family of models - the outcomes given by the
heuristic belief propagation algorithm with those given by exhaustive
enumeration. In the second part of the paper some analytical considerations on
the validity of the annealed approximation are discussed.Comment: Minor correction
The Cavity Approach to Parallel Dynamics of Ising Spins on a Graph
We use the cavity method to study parallel dynamics of disordered Ising
models on a graph. In particular, we derive a set of recursive equations in
single site probabilities of paths propagating along the edges of the graph.
These equations are analogous to the cavity equations for equilibrium models
and are exact on a tree. On graphs with exclusively directed edges we find an
exact expression for the stationary distribution of the spins. We present the
phase diagrams for an Ising model on an asymmetric Bethe lattice and for a
neural network with Hebbian interactions on an asymmetric scale-free graph. For
graphs with a nonzero fraction of symmetric edges the equations can be solved
for a finite number of time steps. Theoretical predictions are confirmed by
simulation results. Using a heuristic method, the cavity equations are extended
to a set of equations that determine the marginals of the stationary
distribution of Ising models on graphs with a nonzero fraction of symmetric
edges. The results of this method are discussed and compared with simulations
Tumor infiltration by chemokine receptor 7 (CCR7)+ T-lymphocytes is a favorable prognostic factor in metastatic colorectal cancer
The immune interactions occurring within the tumor microenvironment have a critical role in determining the outcome of colorectal cancer patients. We carried-out an immunohistochemical analysis of tumor infiltrating T-lymphocytes expressing chemokine receptor 7 (CCR7) in a series of colorectal cancer patients enrolled in a prospective clinical trial. We demonstrated that a high tumor infiltration score of this lymphocyte subset is predictive of longer progression free survival and overall survival. © 2012 Landes Bioscience
A gene expression inflammatory signature specifically predicts multiple myeloma evolution and patients survival
Multiple myeloma (MM) is closely dependent on cross-talk between malignant plasma cells and cellular components of the inflammatory/immunosuppressive bone marrow milieu, which promotes disease progression, drug resistance, neo-angiogenesis, bone destruction and immune-impairment. We investigated the relevance of inflammatory genes in predicting disease evolution and patient survival. A bioinformatics study by Ingenuity Pathway Analysis on gene expression profiling dataset of monoclonal gammopathy of undetermined significance, smoldering and symptomatic-MM, identified inflammatory and cytokine/chemokine pathways as the most progressively affected during disease evolution. We then selected 20 candidate genes involved in B-cell inflammation and we investigated their role in predicting clinical outcome, through univariate and multivariate analyses (log-rank test, logistic regression and Cox-regression model). We defined an 8-genes signature (IL8, IL10, IL17A, CCL3, CCL5, VEGFA, EBI3 and NOS2) identifying each condition (MGUS/smoldering/symptomatic-MM) with 84% accuracy. Moreover, six genes (IFNG, IL2, LTA, CCL2, VEGFA, CCL3) were found independently correlated with patients' survival. Patients whose MM cells expressed high levels of Th1 cytokines (IFNG/LTA/IL2/CCL2) and low levels of CCL3 and VEGFA, experienced the longest survival. On these six genes, we built a prognostic risk score that was validated in three additional independent datasets. In this study, we provide proof-of-concept that inflammation has a critical role in MM patient progression and survival. The inflammatory-gene prognostic signature validated in different datasets clearly indicates novel opportunities for personalized anti-MM treatment
- …