488 research outputs found
Diffusion Process in a Flow
We establish circumstances under which the dispersion of passive contaminants
in a forced, deterministic or random, flow can be consistently interpreted as a
Markovian diffusion process. In case of conservative forcing the repulsive case
only,  with  bounded from below, is
unquestionably admitted by the compatibility conditions. A class of diffusion
processes is exemplified, such that the attractive forcing is allowed as well,
due to an appropriate compensation coming from the "pressure" term. The
compressible Euler flows form their subclass, when regarded as stochastic
processes. We establish circumstances under which the dispersion of passive
contaminants in a forced, deterministic or random, flow can be consistently
interpreted as a Markovian diffusion process. In case of conservative forcing
the repulsive case only,  with  bounded
from below, is unquestionably admitted by the compatibility conditions. A class
of diffusion processes is exemplified, such that the attractive forcing is
allowed as well, due to an appropriate compensation coming from the "pressure"
term. The compressible Euler flows form their subclass, when regarded as
stochastic processes.Comment: 10 pages, Late
Non-equilibrium phase transition in a sheared granular mixture
The dynamics of an impurity (or tracer particle) immersed in a dilute
granular gas under uniform shear flow is investigated. A non-equilibrium phase
transition is identified from an exact solution of the inelastic Boltzmann
equation for a granular binary mixture in the tracer limit, where the impurity
carries either a vanishing (disordered phase) or a finite (ordered phase)
fraction of the total kinetic energy of the system. In the disordered phase,
the granular temperature ratio (impurity "temperature" over that of the host
fluid) is finite, while it diverges in the ordered phase. To correctly capture
this extreme violation of energy equipartition, we show that the picture of an
impurity enslaved to the host fluid is insufficient
Numerical Schemes for Multivalued Backward Stochastic Differential Systems
We define some approximation schemes for different kinds of generalized
backward stochastic differential systems, considered in the Markovian
framework. We propose a mixed approximation scheme for a decoupled system of
forward reflected SDE and backward stochastic variational inequality. We use an
Euler scheme type, combined with Yosida approximation techniques.Comment: 13 page
Diffusion and Current of Brownian Particles in Tilted Piecewise Linear Potentials: Amplification and Coherence
Overdamped motion of Brownian particles in tilted piecewise linear periodic
potentials is considered. Explicit algebraic expressions for the diffusion
coefficient, current, and coherence level of Brownian transport are derived.
Their dependencies on temperature, tilting force, and the shape of the
potential are analyzed. The necessary and sufficient conditions for the
non-monotonic behavior of the diffusion coefficient as a function of
temperature are determined. The diffusion coefficient and coherence level are
found to be extremely sensitive to the asymmetry of the potential. It is
established that at the values of the external force, for which the enhancement
of diffusion is most rapid, the level of coherence has a wide plateau at low
temperatures with the value of the Peclet factor 2. An interpretation of the
amplification of diffusion in comparison with free thermal diffusion in terms
of probability distribution is proposed.Comment: To appear in PR
Angiographic Findings of the Multicenter Randomized Study With the Sirolimus-Eluting Bx Velocity Balloon-Expandable Stent (RAVEL)
BACKGROUND: Restenosis remains the major limitation of coronary catheter-based intervention. In small vessels, the amount of neointimal tissue is disproportionately greater than the vessel caliber, resulting in higher restenosis rates. In the Randomized Study With the Sirolimus-Eluting Bx Velocity Balloon-Expandable Stent (RAVEL) trial, approximately 40% of the vessels were small (<2.5 mm). The present study evaluates the relationship between angiographic outcome and vessel diameter for sirolimus-eluting stents.  
METHODS AND RESULTS: Patients were randomized to receive either an 18-mm bare metal Bx VELOCITY (BS group, n=118), or a sirolimus-eluting Bx VELOCITY stent (SES group, n=120). Subgroups were stratified into tertiles according to their reference diameter (RD; stratum I, RD 2.84 mm). At 6-month follow-up, the restenosis rate in the SES group was 0% in all strata (versus 35%, 26%, and 20%, respectively, in the BS group). In-stent late loss was 0.01+/-0.25 versus 0.80+/-0.43 mm in stratum I, 0.01+/-0.38 versus 0.88+/-0.57 mm in stratum II, and -0.06+/-0.35 versus 0.74+/-0.57 mm in stratum III (SES versus BS). In SES, the minimal lumen diameter (MLD) remained unchanged (Delta -0.72 to 0.72 mm) in 97% of the lesions and increased (=late gain, DeltaMLD <-0.72 mm) in 3% of the lesions. Multivariate predictors for late loss were treatment allocation (P<0.001) and postprocedural MLD (P= 0.008).  
CONCLUSIONS: Sirolimus-eluting stents prevent neointimal proliferation and late lumen loss irrespective of the vessel diameter. The classic inverse relationship between vessel diameter and restenosis rate was seen in the bare stent group but not in the sirolimus-eluting stent group
Organometallic iridium(III) anticancer complexes with new mechanisms of action: NCI-60 screening, mitochondrial targeting, and apoptosis
Platinum complexes related to cisplatin, cis-[PtCl2(NH3)2], are successful anticancer drugs; however, other transition metal complexes offer potential for combating cisplatin resistance, decreasing side effects, and widening the spectrum of activity. Organometallic half-sandwich iridium (IrIII) complexes [Ir(Cpx)(XY)Cl]+/0 (Cpx = biphenyltetramethylcyclopentadienyl and XY = phenanthroline (1), bipyridine (2), or phenylpyridine (3)) all hydrolyze rapidly, forming monofunctional G adducts on DNA with additional intercalation of the phenyl substituents on the Cpx ring. In comparison, highly potent complex 4 (Cpx = phenyltetramethylcyclopentadienyl and XY = N,N-dimethylphenylazopyridine) does not hydrolyze. All show higher potency toward A2780 human ovarian cancer cells compared to cisplatin, with 1, 3, and 4 also demonstrating higher potency in the National Cancer Institute (NCI) NCI-60 cell-line screen. Use of the NCI COMPARE algorithm (which predicts mechanisms of action (MoAs) for emerging anticancer compounds by correlating NCI-60 patterns of sensitivity) shows that the MoA of these IrIII complexes has no correlation to cisplatin (or oxaliplatin), with 3 and 4 emerging as particularly novel compounds. Those findings by COMPARE were experimentally probed by transmission electron microscopy (TEM) of A2780 cells exposed to 1, showing mitochondrial swelling and activation of apoptosis after 24 h. Significant changes in mitochondrial membrane polarization were detected by flow cytometry, and the potency of the complexes was enhanced ca. 5× by co-administration with a low concentration (5 μM) of the γ-glutamyl cysteine synthetase inhibitor L-buthionine sulfoximine (L-BSO). These studies reveal potential polypharmacology of organometallic IrIII complexes, with MoA and cell selectivity governed by structural changes in the chelating ligands
Anatomy of the AGN in NGC 5548. III. The high-energy view with NuSTAR and INTEGRAL
We describe the analysis of the seven broad-band X-ray continuum observations of the archetypal Seyfert 1 galaxy NGC 5548 that were obtained with XMM-Newton or Chandra, simultaneously with high-energy (>10 keV) observations with NuSTAR and INTEGRAL. These data were obtained as part of a multiwavelength campaign undertaken from the summer of 2013 till early 2014. We find evidence of a high-energy cut-off in at least one observation, which we attribute to thermal Comptonization, and a constant reflected component that is likely due to neutral material at least a few light months away from the continuum source. We confirm the presence of strong, partial covering X-ray absorption as the explanation for the sharp decrease in flux through the soft X-ray band. The obscurers appear to be variable in column density and covering fraction on time scales as short as weeks. A fit of the average spectrum over the range 0.3–400 keV with a realistic Comptonization model indicates the presence of a hot corona with a temperature of 40^(+40)_(-10) keV and an optical depth of 2.7^(+0.7)_(-1.2) if a spherical geometry is assumed
Using a New Odour-Baited Device to Explore Options for Luring and Killing Outdoor-Biting Malaria Vectors: A Report on Design and Field Evaluation of the Mosquito Landing Box.
Mosquitoes that bite people outdoors can sustain malaria transmission even where effective indoor interventions such as bednets or indoor residual spraying are already widely used. Outdoor tools may therefore complement current indoor measures and improve control. We developed and evaluated a prototype mosquito control device, the 'Mosquito Landing Box' (MLB), which is baited with human odours and treated with mosquitocidal agents. The findings are used to explore technical options and challenges relevant to luring and killing outdoor-biting malaria vectors in endemic settings. Field experiments were conducted in Tanzania to assess if wild host-seeking mosquitoes 1) visited the MLBs, 2) stayed long or left shortly after arrival at the device, 3) visited the devices at times when humans were also outdoors, and 4) could be killed by contaminants applied on the devices. Odours suctioned from volunteer-occupied tents were also evaluated as a potential low-cost bait, by comparing baited and unbaited MLBs. There were significantly more Anopheles arabiensis, An. funestus, Culex and Mansonia mosquitoes visiting baited MLB than unbaited controls (P<=0.028). Increasing sampling frequency from every 120 min to 60 and 30 min led to an increase in vector catches of up to 3.6 fold (P<=0.002), indicating that many mosquitoes visited the device but left shortly afterwards. Outdoor host-seeking activity of malaria vectors peaked between 7:30 and 10:30pm, and between 4:30 and 6:00am, matching durations when locals were also outdoors. Maximum mortality of mosquitoes visiting MLBs sprayed or painted with formulations of candidate mosquitocidal agent (pirimiphos-methyl) was 51%. Odours from volunteer occupied tents attracted significantly more mosquitoes to MLBs than controls (P<0.001). While odour-baited devices such as the MLBs clearly have potential against outdoor-biting mosquitoes in communities where LLINs are used, candidate contaminants must be those that are effective at ultra-low doses even after short contact periods, since important vector species such as An. arabiensis make only brief visits to such devices. Natural human odours suctioned from occupied dwellings could constitute affordable sources of attractants to supplement odour baits for the devices. The killing agents used should be environmentally safe, long lasting, and have different modes of action (other than pyrethroids as used on LLINs), to curb the risk of physiological insecticide resistance
Migratory flight imposes oxidative stress in bats
Many animal species migrate over long distances, but the physiological challenges of migration are poorly understood. It has recently been suggested that increased molecular oxidative damage might be one important challenge for migratory animals. We tested the hypothesis that autumn migration imposes an oxidative challenge to bats by comparing values of 4 blood-based markers of oxidative status (oxidative damage and both enzymatic and nonenzymatic antioxidants) between Nathusius’ bats Pipistrellus nathusii that were caught during migration flights with those measured in conspecifics after resting for 18 or 24 h. Experiments were carried out at Pape Ornithological Station in Pape (Latvia) in 2016 and 2017. Our results show that flying bats have a blood oxidative status different from that of resting bats due to higher oxidative damage and different expression of both nonenzymatic and enzymatic antioxidants (glutathione peroxidase). The differences in oxidative status markers varied between sampling years and were independent from individual body condition or sex. Our work provides evidence that migratory flight might impose acute oxidative stress to bats and that resting helps animals to recover from oxidative damage accrued en route. Our data suggest that migrating bats and birds might share similar strategies of mitigating and recovering from oxidative stress
- …
