14 research outputs found

    Giant barocaloric effect in all-d-metal Heusler shape memory alloys

    Get PDF
    We have studied the barocaloric properties associated with the martensitic transition of a shape memory Heulser alloy Ni50Mn31.5Ti18.5 which is composed of all-d-metal elements. The composition of the sample has been tailored to avoid long range ferromagnetic order in both ausenite and martensite. The lack of ferromagnetism results in a weak magnetic contribution to the total entropy change thereby leading to a large transition entropy change. The combination of such a large entropy change and a relatively large volume change at the martensitic transition gives rise to giant barocaloric properties in this alloy. When compared to other shape memory Heusler alloys, our material exhibits values for adiabatic temperature and isothermal entropy changes significantly larger than values reported so far for this class of materials. Furthermore, our Ni50Mn31.5Ti18.5 also compares favourably to the best state-of-the-art magnetic barocaloric materials.Peer ReviewedPostprint (author's final draft

    Giant and Reversible Barocaloric Effect in Trinuclear Spin-Crossover Complex Fe3(bntrz)6(tcnset)6

    Full text link
    A giant barocaloric effect (BCE) in a molecular material Fe3(bntrz)6(tcnset)6 (FBT) is reported, where bntrz = 4-(benzyl)-1,2,4-triazole and tcnset = 1,1,3,3-tetracyano-2-thioethylepropenide. The crystal structure of FBT contains a trinuclear transition metal complex that undergoes an abrupt spin-state switching between the state in which all three FeII centers are in the high-spin (S = 2) electronic configuration and the state in which all of them are in the low-spin (S = 0) configuration. Despite the strongly cooperative nature of the spin transition, it proceeds with a negligible hysteresis and a large volumetric change, suggesting that FBT should be a good candidate for producing a large BCE. Powder X-ray diffraction and calorimetry reveal that the material is highly susceptible to applied pressure, as the transition temperature spans the range from 318 at ambient pressure to 383 K at 2.6 kbar. Despite the large shift in the spin-transition temperature, its nonhysteretic character is maintained under applied pressure. Such behavior leads to a remarkably large and reversible BCE, characterized by an isothermal entropy change of 120 J kg−1 K−1 and an adiabatic temperature change of 35 K, which are among the highest reversible values reported for any caloric material thus far

    Giant barocaloric effect in all-d-metal Heusler shape memory alloys

    No full text
    We have studied the barocaloric properties associated with the martensitic transition of a shape memory Heulser alloy Ni50Mn31.5Ti18.5 which is composed of all-d-metal elements. The composition of the sample has been tailored to avoid long range ferromagnetic order in both ausenite and martensite. The lack of ferromagnetism results in a weak magnetic contribution to the total entropy change thereby leading to a large transition entropy change. The combination of such a large entropy change and a relatively large volume change at the martensitic transition gives rise to giant barocaloric properties in this alloy. When compared to other shape memory Heusler alloys, our material exhibits values for adiabatic temperature and isothermal entropy changes significantly larger than values reported so far for this class of materials. Furthermore, our Ni50Mn31.5Ti18.5 also compares favourably to the best state-of-the-art magnetic barocaloric materials.Peer Reviewe
    corecore