1,067 research outputs found

    A Method of Areas for Manipulating the Entanglement Properties of One Copy of a Two-Particle Pure State

    Get PDF
    We consider the problem of how to manipulate the entanglement properties of a general two-particle pure state, shared between Alice and Bob, by using only local operations at each end and classical communication between Alice and Bob. A method is developed in which this type of problem is found to be equivalent to a problem involving the cutting and pasting of certain shapes along with a certain colouring problem. We consider two problems. Firstly we find the most general way of manipulating the state to obtain maximally entangled states. After such a manipulation the entangled state |11>+|22>+....|mm> is obtained with probability p_m. We obtain an expression for the optimal average entanglement. Also, some results of Lo and Popescu pertaining to this problem are given simple geometric proofs. Secondly, we consider how to manipulate one two particle entangled pure state to another with certainty. We derive Nielsen's theorem (which states the necessary and sufficient condition for this to be possible) using the method of areas.Comment: 29 pages, 9 figures. Section 2.4 clarified. Error in second colouring theorem (section 3.2) corrected. Some other minor change

    On Quantum Algorithms

    Get PDF
    Quantum computers use the quantum interference of different computational paths to enhance correct outcomes and suppress erroneous outcomes of computations. In effect, they follow the same logical paradigm as (multi-particle) interferometers. We show how most known quantum algorithms, including quantum algorithms for factorising and counting, may be cast in this manner. Quantum searching is described as inducing a desired relative phase between two eigenvectors to yield constructive interference on the sought elements and destructive interference on the remaining terms.Comment: 15 pages, 8 figure

    Improved Quantum Communication Complexity Bounds for Disjointness and Equality

    Get PDF
    We prove new bounds on the quantum communication complexity of the disjointness and equality problems. For the case of exact and non-deterministic protocols we show that these complexities are all equal to n+1, the previous best lower bound being n/2. We show this by improving a general bound for non-deterministic protocols of de Wolf. We also give an O(sqrt{n}c^{log^* n})-qubit bounded-error protocol for disjointness, modifying and improving the earlier O(sqrt{n}log n) protocol of Buhrman, Cleve, and Wigderson, and prove an Omega(sqrt{n}) lower bound for a large class of protocols that includes the BCW-protocol as well as our new protocol.Comment: 11 pages LaTe

    Stochastic energy-cascade model for 1+1 dimensional fully developed turbulence

    Full text link
    Geometrical random multiplicative cascade processes are often used to model positive-valued multifractal fields such as the energy dissipation in fully developed turbulence. We propose a dynamical generalization describing the energy dissipation in terms of a continuous and homogeneous stochastic field in one space and one time dimension. In the model, correlations originate in the overlap of the respective spacetime histories of field amplitudes. The theoretical two- and three-point correlation functions are found to be in good agreement with their equal-time counterparts extracted from wind tunnel turbulent shear flow data

    Not Just a Theory—The Utility of Mathematical Models in Evolutionary Biology

    Get PDF
    Models have made numerous contributions to evolutionary biology, but misunderstandings persist regarding their purpose. By formally testing the logic of verbal hypotheses, proof-of-concept models clarify thinking, uncover hidden assumptions, and spur new directions of study. thumbnail image credit: modified from the Biodiversity Heritage Librar

    Substituting a qubit for an arbitrarily large number of classical bits

    Full text link
    We show that a qubit can be used to substitute for an arbitrarily large number of classical bits. We consider a physical system S interacting locally with a classical field phi(x) as it travels directly from point A to point B. The field has the property that its integrated value is an integer multiple of some constant. The problem is to determine whether the integer is odd or even. This task can be performed perfectly if S is a qubit. On the otherhand, if S is a classical system then we show that it must carry an arbitrarily large amount of classical information. We identify the physical reason for such a huge quantum advantage, and show that it also implies a large difference between the size of quantum and classical memories necessary for some computations. We also present a simple proof that no finite amount of one-way classical communication can perfectly simulate the effect of quantum entanglement.Comment: 8 pages, LaTeX, no figures. v2: added result on entanglement simulation with classical communication; v3: minor correction to main proof, change of title, added referenc

    Correspondence

    Get PDF

    Classical and quantum fingerprinting with shared randomness and one-sided error

    Full text link
    Within the simultaneous message passing model of communication complexity, under a public-coin assumption, we derive the minimum achievable worst-case error probability of a classical fingerprinting protocol with one-sided error. We then present entanglement-assisted quantum fingerprinting protocols attaining worst-case error probabilities that breach this bound.Comment: 10 pages, 1 figur

    Assessment of the National Wind Coordinating Collaborative: Addressing Environmental and Siting Issues Associated with Wind Energy Development

    Get PDF
    The National Wind Coordinating Collaborative (NWCC) is a consensus-based stakeholder group comprised of representatives from the utility, wind industry, environmental, consumer, regulatory, power marketer, agricultural, tribal, economic development, and state and federal government sectors. The purpose of the NWCC is to support the development of an environmentally, economically, and politically sustainable commercial market for wind power (NWCC 2010). The NWCC has been funded by the U.S. Department of Energy (DOE) since its inception in 1994. In order to evaluate the impact of the work of the NWCC and how this work aligns with DOE’s strategic priorities, DOE tasked Pacific Northwest National Laboratory (PNNL) to conduct a series of informal interviews with a small sample of those involved with NWCC

    Quantum diagonalization of Hermitean matrices

    Get PDF
    To measure an observable of a quantum mechanical system leaves it in one of its eigenstates and the result of the measurement is one of its eigenvalues. This process is shown to be a computational resource: Hermitean (N Ă—N) matrices can be diagonalized, in principle, by performing appropriate quantum mechanical measurements. To do so, one considers the given matrix as an observable of a single spin with appropriate length s which can be measured using a generalized Stern-Gerlach apparatus. Then, each run provides one eigenvalue of the observable. As the underlying working principle is the `collapse of the wavefunction' associated with a measurement, the procedure is neither a digital nor an analogue calculation - it defines thus a new example of a quantum mechanical method of computation
    • …
    corecore