271 research outputs found

    Evidence of two-dimensional macroscopic quantum tunneling of a current-biased DC-SQUID

    Get PDF
    The escape probability out of the superconducting state of a hysteretic DC-SQUID has been measured at different values of the applied magnetic flux. At low temperature, the escape current and the width of the probability distribution are temperature independent but they depend on flux. Experimental results do not fit the usual one-dimensional (1D) Macroscopic Quantum Tunneling (MQT) law but are perfectly accounted for by the two-dimensional (2D) MQT behaviour as we propose here. Near zero flux, our data confirms the recent MQT observation in a DC-SQUID \cite{Li02}.Comment: 4 pages, 4 figures Accepted to PR

    Improving the performance of bright quantum dot single photon sources using amplitude modulation

    Get PDF
    Single epitaxially-grown semiconductor quantum dots have great potential as single photon sources for photonic quantum technologies, though in practice devices often exhibit non-ideal behavior. Here, we demonstrate that amplitude modulation can improve the performance of quantum-dot-based sources. Starting with a bright source consisting of a single quantum dot in a fiber-coupled microdisk cavity, we use synchronized amplitude modulation to temporally filter the emitted light. We observe that the single photon purity, temporal overlap between successive emission events, and indistinguishability can be greatly improved with this technique. As this method can be applied to any triggered single photon source, independent of geometry and after device fabrication, it is a flexible approach to improve the performance of solid-state systems, which often suffer from excess dephasing and multi-photon background emission

    Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling

    Get PDF
    High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom band are challenges facing the development of fibre-based long-haul quantum communication networks. Here we report a very fast single photon source in the 1,550-nm telecom band, which is achieved by a large Purcell enhancement that results from the coupling of a single InAs quantum dot and an InP photonic crystal nanocavity. At a resonance, the spontaneous emission rate was enhanced by a factor of 5 resulting a record fast emission lifetime of 0.2 ns at 1,550 nm. We also demonstrate that this emission exhibits an enhanced anti-bunching dip. This is the first realization of nanocavity-enhanced single photon emitters in the 1,550-nm telecom band. This coupled quantum dot cavity system in the telecom band thus provides a bright high-bit-rate non-classical single photon source that offers appealing novel opportunities for the development of a long-haul quantum telecommunication system via optical fibres.Comment: 16 pages, 4 figure

    Integrin Activation Promotes Axon Growth on Inhibitory Chondroitin Sulfate Proteoglycans by Enhancing Integrin Signaling

    Get PDF
    We report on the enhancement of the spontaneous emission in the visible red spectral range from site-controlled InP/GaInP quantum dots by resonant coupling to Tammplasmon modes confined beneath gold disks in a hybrid metal/semiconductor structure. The enhancement of the emission intensity is confirmed by spatially resolved microphotoluminescence area scans and temperature dependent measurements. Single photon emission from our coupled system is verified via second order autocorrelation measurements. We observe bright single quantum dot emission of up to ~173000 detected photons per second at a repetition rate of the excitation source of 82 MHz, and calculate an extraction efficiency of our device as high as 7%

    Engineering of quantum dot photon sources via electro-elastic fields

    Full text link
    The possibility to generate and manipulate non-classical light using the tools of mature semiconductor technology carries great promise for the implementation of quantum communication science. This is indeed one of the main driving forces behind ongoing research on the study of semiconductor quantum dots. Often referred to as artificial atoms, quantum dots can generate single and entangled photons on demand and, unlike their natural counterpart, can be easily integrated into well-established optoelectronic devices. However, the inherent random nature of the quantum dot growth processes results in a lack of control of their emission properties. This represents a major roadblock towards the exploitation of these quantum emitters in the foreseen applications. This chapter describes a novel class of quantum dot devices that uses the combined action of strain and electric fields to reshape the emission properties of single quantum dots. The resulting electro-elastic fields allow for control of emission and binding energies, charge states, and energy level splittings and are suitable to correct for the quantum dot structural asymmetries that usually prevent these semiconductor nanostructures from emitting polarization-entangled photons. Key experiments in this field are presented and future directions are discussed.Comment: to appear as a book chapter in a compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchel

    Effects of decoherence and errors on Bell-inequality violation

    Full text link
    We study optimal conditions for violation of the Clauser-Horne-Shimony-Holt form of the Bell inequality in the presence of decoherence and measurement errors. We obtain all detector configurations providing the maximal Bell inequality violation for a general (pure or mixed) state. We consider local decoherence which includes energy relaxation at the zero temperature and arbitrary dephasing. Conditions for the maximal Bell-inequality violation in the presence of decoherence are analyzed both analytically and numerically for the general case and for a number of important special cases. Combined effects of measurement errors and decoherence are also discussed.Comment: 18 pages, 5 figure

    Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide

    Get PDF
    Access to the electron spin is at the heart of many protocols for integrated and distributed quantum-information processing [1-4]. For instance, interfacing the spin-state of an electron and a photon can be utilized to perform quantum gates between photons [2,5] or to entangle remote spin states [6-9]. Ultimately, a quantum network of entangled spins constitutes a new paradigm in quantum optics [1]. Towards this goal, an integrated spin-photon interface would be a major leap forward. Here we demonstrate an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The spin can be deterministically prepared with a fidelity of 96\%. Subsequently the system is used to implement a "single-spin photonic switch", where the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may enable on-chip photon-photon gates [2], single-photon transistors [10], and efficient photonic cluster state generation [11]
    • 

    corecore