19 research outputs found

    Morphological changes in diabetic kidney are associated with increased O-GlcNAcylation of cytoskeletal proteins including α-actinin 4

    Get PDF
    Abstract Purpose The objective of the present study is to identify proteins that change in the extent of the modification with O-linked N-acetylglucosamine (O-GlcNAcylation) in the kidney from diabetic model Goto-Kakizaki (GK) rats, and to discuss the relation between O-GlcNAcylation and the pathological condition in diabetes. Methods O-GlcNAcylated proteins were identified by two-dimensional gel electrophoresis, immunoblotting and peptide mass fingerprinting. The level of O-GlcNAcylation of these proteins was examined by immunoprecipitation, immunoblotting and in situ Proximity Ligation Assay (PLA). Results O-GlcNAcylated proteins that changed significantly in the degree of O-GlcNAcylation were identified as cytoskeletal proteins (α-actin, α-tubulin, α-actinin 4, myosin) and mitochondrial proteins (ATP synthase β, pyruvate carboxylase). The extent of O-GlcNAcylation of the above proteins increased in the diabetic kidney. Immunofluorescence and in situ PLA studies revealed that the levels of O-GlcNAcylation of actin, α-actinin 4 and myosin were significantly increased in the glomerulus and the proximal tubule of the diabetic kidney. Immunoelectron microscopy revealed that immunolabeling of α-actinin 4 is disturbed and increased in the foot process of podocytes of glomerulus and in the microvilli of proximal tubules. Conclusion These results suggest that changes in the O-GlcNAcylation of cytoskeletal proteins are closely associated with the morphological changes in the podocyte foot processes in the glomerulus and in microvilli of proximal tubules in the diabetic kidney. This is the first report to show that α-actinin 4 is O-GlcNAcylated. α-Actinin 4 will be a good marker protein to examine the relation between O-GlcNAcylation and diabetic nephropathy.</p

    A Fragment of the LG3 Peptide of Endorepellin Is Present in the Urine of Physically Active Mining Workers: A Potential Marker of Physical Activity

    Get PDF
    Biomarker analysis has been implemented in sports research in an attempt to monitor the effects of exertion and fatigue in athletes. This study proposed that while such biomarkers may be useful for monitoring injury risk in workers, proteomic approaches might also be utilised to identify novel exertion or injury markers. We found that urinary urea and cortisol levels were significantly elevated in mining workers following a 12 hour overnight shift. These levels failed to return to baseline over 24 h in the more active maintenance crew compared to truck drivers (operators) suggesting a lack of recovery between shifts. Use of a SELDI-TOF MS approach to detect novel exertion or injury markers revealed a spectral feature which was associated with workers in both work categories who were engaged in higher levels of physical activity. This feature was identified as the LG3 peptide, a C-terminal fragment of the anti-angiogenic/anti-tumourigenic protein endorepellin. This finding suggests that urinary LG3 peptide may be a biomarker of physical activity. It is also possible that the activity mediated release of LG3/endorepellin into the circulation may represent a biological mechanism for the known inverse association between physical activity and cancer risk/survival

    Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles

    No full text
    Neural stimulation controls the contractile properties of skeletal muscle fibres through transcriptional regulation of a number of proteins, including myosin isoforms. To study whether neural stimulation is also involved in the control of post-translational modifications of myosin, we analysed the phosphorylation of alkali myosin light chains (MLC1) and regulatory myosin light chains (MLC2) in rat slow (soleus) and fast (extensor digitorum longus EDL) muscles using 2D-gel electrophoresis and mass spectrometry. In control rats, soleus and EDL muscles differed in the proportion of the fast and slow isoforms of MLC1 and MLC2 that they contained, and also in the distribution of the variants with distinct isoelectric points identified on 2D gels. Denervation induced a slow-to-fast transition in myosin isoforms and increased MLC2 phosphorylation in soleus, whereas the opposite changes in myosin isoform expression and MLC2 phosphorylation were observed in EDL. Chronic low-frequency stimulation of EDL, with a pattern mimicking that of soleus, induced a fast-to-slow transition in myosin isoforms, accompanied by a decreased MLC2 phosphorylation. Chronic administration (10 mg.kg(-1).d(-1) intraperitoneally) of cyclosporin A, a known inhibitor of calcineurin, did not change significantly the distribution of fast and slow MLC2 isoforms or the phosphorylation of MLC2. All changes in MLC2 phosphorylation were paralleled by changes in MLC kinase expression without any variation of the phosphatase subunit, PP1. No variation in MLC1 phosphorylation was detectable after denervation or cyclosporin A administration. These results suggest that the low-frequency neural discharge, typical of soleus, determines low levels of MLC2 phosphorylation together with expression of slow myosin, and that MLC2 phosphorylation is regulated by controlling MLC kinase expression through calcineurin-independent pathways

    O-GlcNAcylation contributes to the vascular effects of ET-1 via activation of the RhoA/Rho-kinase pathway

    No full text
    Aims Glycosylation with beta-N-acetylglucosamine (O-GlcNAcylation) is one of the most complex post-translational modifications. The cycling of O-GlcNAc is controlled by two enzymes: UDP-NAc transferase (OGT) and O-GlcNAcase (OGA). We recently reported that endothelin-1 (ET-1) augments vascular levels of O-GlcNAcylated proteins. Here we tested the hypothesis that O-GlcNAcylation contributes to the vascular effects of ET-1 via activation of the RhoA/Rho-kinase pathway. Methods and results Incubation of vascular smooth muscle cells (VSMCs) with ET-1 (0.1 mu M) produces a time-dependent increase in O-GlcNAc levels. ET-1-induced O-GlcNAcylation is not observed when VSMCs are previously transfected with OGT siRNA, treated with ST045849 (OGT inhibitor) or atrasentan (ET(A) antagonist). ET-1 as well as PugNAc (OGA inhibitor) augmented contractions to phenylephrine in endothelium-denuded rat aortas, an effect that was abolished by the Rho kinase inhibitor Y-27632. Incubation of VSMCs with ET-1 increased expression of the phosphorylated forms of myosin phosphatase target subunit 1 (MYPT-1), protein kinase C-potentiated protein phosphatase 1 inhibitor protein (protein kinase C-potentiated phosphatase inhibitor-17), and myosin light chain (MLC) and RhoA expression and activity, and this effect was abolished by both OGT siRNA transfection or OGT inhibition and atrasentan. ET-1 also augmented expression of PDZ-Rho GEF (guanine nucleotide exchange factor) and p115-Rho GEF in VSMCs and this was prevented by OGT siRNA, ST045849, and atrasentan. Conclusion We suggest that ET-1 augments O-GlcNAcylation and this modification contributes to increased vascular contractile responses via activation of the RhoA/Rho-kinase pathway.U.S. National Institutes of Health (NIH)National Institutes of Health (NIH)[HL-74167]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), BrazilFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    corecore