65 research outputs found

    Adiponectin-Mediated Analgesia and AntiInflammatory Effects in Rat

    Get PDF
    The adipose tissue-derived protein, adiponectin, has significant anti-inflammatory properties in a variety of disease conditions. Recent evidence that adiponectin and its receptors (AdipoR1 and AdipoR2) are expressed in central nervous system, suggests that it may also have a central modulatory role in pain and inflammation. This study set out to investigate the effects of exogenously applied recombinant adiponectin (via intrathecal and intraplantar routes; 10–5000 ng) on the development of peripheral inflammation (paw oedema) and pain hypersensitivity in the rat carrageenan model of inflammation. Expression of adiponectin, AdipoR1 and AdipoR2 mRNA and protein was characterised in dorsal spinal cord using real-time polymerase chain reaction (PCR) and Western blotting. AdipoR1 and AdipoR2 mRNA and protein were found to be constitutively expressed in dorsal spinal cord, but no change in mRNA expression levels was detected in response to carrageenan-induced inflammation. Adiponectin mRNA, but not protein, was detected in dorsal spinal cord, although levels were very low. Intrathecal administration of adiponectin, both pre- and 3 hours post-carrageenan, significantly attenuated thermal hyperalgesia and mechanical hypersensitivity. Intrathecal administration of adiponectin post-carrageenan also reduced peripheral inflammation. Intraplantar administration of adiponectin pre-carrageenan dose-dependently reduced thermal hyperalgesia but had no effect on mechanical hypersensitivity and peripheral inflammation. These results show that adiponectin functions both peripherally and centrally at the spinal cord level, likely through activation of AdipoRs to modulate pain and peripheral inflammation. These data suggest that adiponectin receptors may be a novel therapeutic target for pain modulation

    Mechanical drilling processes for titanium alloys: a literature review

    Get PDF
    Titanium and its alloys (Ti) are attractive for many applications due to their superior properties. However, they are regarded as hard-to-machine materials. Drilling is an important machining process since it is involved in nearly all Ti applications. It is desirable to develop cost-effective drilling processes for Ti and/or improve the cost-effectiveness of currently-available processes. Such development and improvement will be benefited by a comprehensive literature review of drilling processes for Ti. This paper presents a literature review on mechanical drilling processes for Ti, namely, twist drilling, vibration assisted twist drilling, ultrasonic machining, and rotary ultrasonic machining. It discusses cutting force, cutting temperature, tool wear and tool life, hole quality (diameter and cylindricity, surface roughness, and burr), and chip type when drilling of Ti using these processes

    Rotary ultrasonic machining of titanium alloy: effects of machining variables

    Get PDF
    Titanium and its alloys are finding prime applications in industries due to their unique properties. However, high cost of machining is one of the limiting factors for their widespread use. Tremendous efforts are being made to improve the existing machining processes and new processes are being developed to reduce the machining cost in order to increase the titanium market. However, there is no report on the systematic study of the effects of machining variables on output parameters in rotary ultrasonic machining of titanium and its alloys. This paper presents as experimental study on rotary ultrasonic machining of a titanium alloy. The cutting force, material removal rate, and surface roughness when rotary ultrasonic machining of a titanium alloy have been investigated using different machining variables
    • …
    corecore