699 research outputs found

    An efficient surrogate model for emulation and physics extraction of large eddy simulations

    Full text link
    In the quest for advanced propulsion and power-generation systems, high-fidelity simulations are too computationally expensive to survey the desired design space, and a new design methodology is needed that combines engineering physics, computer simulations and statistical modeling. In this paper, we propose a new surrogate model that provides efficient prediction and uncertainty quantification of turbulent flows in swirl injectors with varying geometries, devices commonly used in many engineering applications. The novelty of the proposed method lies in the incorporation of known physical properties of the fluid flow as {simplifying assumptions} for the statistical model. In view of the massive simulation data at hand, which is on the order of hundreds of gigabytes, these assumptions allow for accurate flow predictions in around an hour of computation time. To contrast, existing flow emulators which forgo such simplications may require more computation time for training and prediction than is needed for conducting the simulation itself. Moreover, by accounting for coupling mechanisms between flow variables, the proposed model can jointly reduce prediction uncertainty and extract useful flow physics, which can then be used to guide further investigations.Comment: Submitted to JASA A&C

    GAMIVAL: Video Quality Prediction on Mobile Cloud Gaming Content

    Full text link
    The mobile cloud gaming industry has been rapidly growing over the last decade. When streaming gaming videos are transmitted to customers' client devices from cloud servers, algorithms that can monitor distorted video quality without having any reference video available are desirable tools. However, creating No-Reference Video Quality Assessment (NR VQA) models that can accurately predict the quality of streaming gaming videos rendered by computer graphics engines is a challenging problem, since gaming content generally differs statistically from naturalistic videos, often lacks detail, and contains many smooth regions. Until recently, the problem has been further complicated by the lack of adequate subjective quality databases of mobile gaming content. We have created a new gaming-specific NR VQA model called the Gaming Video Quality Evaluator (GAMIVAL), which combines and leverages the advantages of spatial and temporal gaming distorted scene statistics models, a neural noise model, and deep semantic features. Using a support vector regression (SVR) as a regressor, GAMIVAL achieves superior performance on the new LIVE-Meta Mobile Cloud Gaming (LIVE-Meta MCG) video quality database.Comment: Accepted to IEEE SPL 2023. The implementation of GAMIVAL has been made available online: https://github.com/lskdream/GAMIVA

    Study of Subjective and Objective Quality Assessment of Mobile Cloud Gaming Videos

    Full text link
    We present the outcomes of a recent large-scale subjective study of Mobile Cloud Gaming Video Quality Assessment (MCG-VQA) on a diverse set of gaming videos. Rapid advancements in cloud services, faster video encoding technologies, and increased access to high-speed, low-latency wireless internet have all contributed to the exponential growth of the Mobile Cloud Gaming industry. Consequently, the development of methods to assess the quality of real-time video feeds to end-users of cloud gaming platforms has become increasingly important. However, due to the lack of a large-scale public Mobile Cloud Gaming Video dataset containing a diverse set of distorted videos with corresponding subjective scores, there has been limited work on the development of MCG-VQA models. Towards accelerating progress towards these goals, we created a new dataset, named the LIVE-Meta Mobile Cloud Gaming (LIVE-Meta-MCG) video quality database, composed of 600 landscape and portrait gaming videos, on which we collected 14,400 subjective quality ratings from an in-lab subjective study. Additionally, to demonstrate the usefulness of the new resource, we benchmarked multiple state-of-the-art VQA algorithms on the database. The new database will be made publicly available on our website: \url{https://live.ece.utexas.edu/research/LIVE-Meta-Mobile-Cloud-Gaming/index.html}Comment: Accepted to IEEE Transactions on Image Processing, 2023. The database will be publicly available by 1st week of July 202

    Galaxy source counts at 7.7 μ\mum, 10 μ\mum and 15 μ\mum with the James Webb Space Telescope

    Full text link
    We present mid-infrared galaxy number counts based on the Early Release Observations obtained by the James Webb Space Telescope (JWST) at 7.7-, 10- and 15-μ\mum (F770W, F1000W and F1500W, respectively) bands of the Mid-Infrared Instrument (MIRI). Due to the superior sensitivity of JWST, the 80 percent completeness limits reach 0.32, 0.79 and 2.0 μ\muJy in F770W, F1000W and F1500W filters, respectively, i.e., \sim100 times deeper than previous space infrared telescopes such as Spitzer or AKARI. The number counts reach much deeper than the broad bump around 0.050.50.05\sim0.5 mJy due to polycyclic aromatic hydrocarbon (PAH) emissions. An extrapolation towards fainter flux from the evolutionary models in the literature agrees amazingly well with the new data, where the extrapolated faint-end of infrared luminosity functions combined with the cosmic star-formation history to higher redshifts can reproduce the deeper number counts by JWST. Our understanding of the faint infrared sources has been confirmed by the observed data due to the superb sensitivity of JWST.Comment: 6 pages, 8 figures. Accepted for publication in MNRA

    Polycyclic aromatic hydrocarbon (PAH) luminous galaxies in JWST CEERS data

    Full text link
    It has been an unanswered question how many dusty galaxies have been undetected from the state-of-the-art observational surveys. JWST enables us to detect faint IR galaxies that have prominent polycyclic aromatic hydrocarbon (PAH) features in the mid-IR wavelengths. PAH is a valuable tracer of star formation and dust properties in the mid-infrared wavelength. The JWST Cosmic Evolution Early Release Science (CEERS) fields provide us with wavelength coverage from 7.7 to 21 μ\mum using six photometric bands of the mid-infrared instrument (MIRI). We have identified galaxies dominated by mid-IR emission from PAHs, termed PAH galaxies. From our multi-band photometry catalogue, we selected ten PAH galaxies displaying high flux ratios of log(S15/S10)>0.8\log(S_{15}/S_{10}) > 0.8. The SED fitting analysis indicates that these galaxies are star-forming galaxies with total IR luminosities of 101010^{10} \sim 1011.510^{11.5} LL_{\odot} at z 1\sim 1. The morphology of PAH galaxies does not show any clear signatures of major merging or interaction within the MIRI resolution. The majority of them are on the star-formation main sequence at z1z \sim 1. Our result demonstrates that JWST can detect PAH emissions from normal star-forming galaxies at z1z \sim 1, in addition to ultra-luminous infrared galaxies (ULIRGs) or luminous infrared galaxies (LIRGs).Comment: 12 pages, 20 figures, 4 tables. Accepted by MNRAS. A summary video is at https://www.youtube.com/watch?v=UtPaVTFM4f8&ab_channel=NTHUCosmolog

    The bracteatus pineapple genome and domestication of clonally propagated crops

    Get PDF
    Domestication of clonally propagated crops such as pineapple from South America was hypothesized to be a 'one-step operation'. We sequenced the genome of Ananas comosus var. bracteatus CB5 and assembled 513 Mb into 25 chromosomes with 29,412 genes. Comparison of the genomes of CB5, F153 and MD2 elucidated the genomic basis of fiber production, color formation, sugar accumulation and fruit maturation. We also resequenced 89 Ananas genomes. Cultivars 'Smooth Cayenne' and 'Queen' exhibited ancient and recent admixture, while 'Singapore Spanish' supported a one-step operation of domestication. We identified 25 selective sweeps, including a strong sweep containing a pair of tandemly duplicated bromelain inhibitors. Four candidate genes for self-incompatibility were linked in F153, but were not functional in self-compatible CB5. Our findings support the coexistence of sexual recombination and a one-step operation in the domestication of clonally propagated crops. This work guides the exploration of sexual and asexual domestication trajectories in other clonally propagated crops
    corecore