320 research outputs found

    A robust coregistration method for in vivo studies using a first generation simultaneous PET/MR scanner

    Get PDF
    Purpose: Hybrid positron emission tomography (PET)/magnetic resonance (MR) imaging systems have recently been built that allow functional and anatomical information obtained from PET and MR to be acquired simultaneously. The authors have developed a robust coregistration scheme for a first generation small animal PET/MR imaging system and illustrated the potential of this system to study intratumoral heterogeneity in a mouse model. Methods: An alignment strategy to fuse simultaneously acquired PET and MR data, using the MR imaging gradient coordinate system as the reference basis, was developed. The fidelity of the alignment was evaluated over multiple study sessions. In order to explore its robustness in vivo, the alignment strategy was applied to explore the heterogeneity of glucose metabolism in a xenograft tumor model, using ^(18)F-FDG-PET to guide the acquisition of localized ^1H MR spectra within a single imaging session. Results: The alignment method consistently fused the PET/MR data sets with subvoxel accuracy (registration error mean=0.55 voxels, <0.28 mm); this was independent of location within the field of view. When the system was used to study intratumoral heterogeneity within xenograft tumors, a correlation of high ^(18)F-FDG-PET signal with high choline/creatine ratio was observed. Conclusions: The authors present an implementation of an efficient and robust coregistration scheme for multimodal noninvasive imaging using PET and MR. This setup allows time-sensitive, multimodal studies of physiology to be conducted in an efficient manner

    Cystoadaptometry in children with nephrolithiasis

    Get PDF
    In view of studying the function of the urinary bladder, at thirty nine children with ages between four and fifteen years old, diagnosed with urotiliasis, 39 (thirty nine) cystoadaptomerys were performed and in about 60% (sixty percent) of the cases bladder hypotony was found. In order to improve the treatment of the bladder hypotony, stimulant drugs of the urinary tract peristalsis, such as Neostigmina, Cerucal, Neiromedina, were added to the treatment, which showed satisfying results

    On Optimal Coverage of a Tree with Multiple Robots

    Full text link
    We study the algorithmic problem of optimally covering a tree with kk mobile robots. The tree is known to all robots, and our goal is to assign a walk to each robot in such a way that the union of these walks covers the whole tree. We assume that the edges have the same length, and that traveling along an edge takes a unit of time. Two objective functions are considered: the cover time and the cover length. The cover time is the maximum time a robot needs to finish its assigned walk and the cover length is the sum of the lengths of all the walks. We also consider a variant in which the robots must rendezvous periodically at the same vertex in at most a certain number of moves. We show that the problem is different for the two cost functions. For the cover time minimization problem, we prove that the problem is NP-hard when kk is part of the input, regardless of whether periodic rendezvous are required or not. For the cover length minimization problem, we show that it can be solved in polynomial time when periodic rendezvous are not required, and it is NP-hard otherwise

    Strong Pinning in High Temperature Superconductors

    Full text link
    Detailed measurements of the critical current density jc of YBa2Cu3O7 films grown by pulsed laser deposition reveal the increase of jc as function of the filmthickness. Both this thickness dependence and the field dependence of the critical current are consistently described using a generalization of the theory of strong pinning of Ovchinnikov and Ivlev [Phys. Rev. B 43, 8024 (1991)]. From the model, we deduce values of the defect density (10^21 m^-3) and the elementary pinning force, which are in good agreement with the generally accepted values for Y2O3-inclusions. In the absence of clear evidence that the critical current is determined by linear defects or modulations of the film thickness, our model provides an alternative explanation for the rather universal field dependence of the critical current density found in YBa2Cu3O7 films deposited by different methods.Comment: 11 pages; 8 Figures; Published Phys. Rev. B 66, 024523 (2002

    Anatomy-Aware Self-supervised Fetal MRI Synthesis from Unpaired Ultrasound Images

    Full text link
    Fetal brain magnetic resonance imaging (MRI) offers exquisite images of the developing brain but is not suitable for anomaly screening. For this ultrasound (US) is employed. While expert sonographers are adept at reading US images, MR images are much easier for non-experts to interpret. Hence in this paper we seek to produce images with MRI-like appearance directly from clinical US images. Our own clinical motivation is to seek a way to communicate US findings to patients or clinical professionals unfamiliar with US, but in medical image analysis such a capability is potentially useful, for instance, for US-MRI registration or fusion. Our model is self-supervised and end-to-end trainable. Specifically, based on an assumption that the US and MRI data share a similar anatomical latent space, we first utilise an extractor to determine shared latent features, which are then used for data synthesis. Since paired data was unavailable for our study (and rare in practice), we propose to enforce the distributions to be similar instead of employing pixel-wise constraints, by adversarial learning in both the image domain and latent space. Furthermore, we propose an adversarial structural constraint to regularise the anatomical structures between the two modalities during the synthesis. A cross-modal attention scheme is proposed to leverage non-local spatial correlations. The feasibility of the approach to produce realistic looking MR images is demonstrated quantitatively and with a qualitative evaluation compared to real fetal MR images.Comment: MICCAI-MLMI 201

    Statistical analysis of compressive low rank tomography with random measurements

    Get PDF
    We consider the statistical problem of 'compressive' estimation of low rank states (r«d ) with random basis measurements, where r, d are the rank and dimension of the state respectively. We investigate whether for a fixed sample size N, the estimation error associated with a 'compressive' measurement setup is 'close' to that of the setting where a large number of bases are measured. We generalise and extend previous results, and show that the mean square error (MSE) associated with the Frobenius norm attains the optimal rate rd/N with only O(rlogd) random basis measurements for all states. An important tool in the analysis is the concentration of the Fisher information matrix (FIM). We demonstrate that although a concentration of the MSE follows from a concentration of the FIM for most states, the FIM fails to concentrate for states with eigenvalues close to zero. We analyse this phenomenon in the case of a single qubit and demonstrate a concentration of the MSE about its optimal despite a lack of concentration of the FIM for states close to the boundary of the Bloch sphere. We also consider the estimation error in terms of a different metric–the quantum infidelity. We show that a concentration in the mean infidelity (MINF) does not exist uniformly over all states, highlighting the importance of loss function choice. Specifically, we show that for states that are nearly pure, the MINF scales as 1/√N but the constant converges to zero as the number of settings is increased. This demonstrates a lack of 'compressive' recovery for nearly pure states in this metric

    The pandemic brain: Neuroinflammation in non-infected individuals during the COVID-19 pandemic

    Get PDF
    While COVID-19 research has seen an explosion in the literature, the impact of pandemic-related societal and lifestyle disruptions on brain health among the uninfected remains underexplored. However, a global increase in the prevalence of fatigue, brain fog, depression and other “sickness behavior”-like symptoms implicates a possible dysregulation in neuroimmune mechanisms even among those never infected by the virus. We compared fifty-seven ‘Pre-Pandemic’ and fifteen ‘Pandemic’ datasets from individuals originally enrolled as control subjects for various completed, or ongoing, research studies available in our records, with a confirmed negative test for SARS-CoV-2 antibodies. We used a combination of multimodal molecular brain imaging (simultaneous positron emission tomography / magnetic resonance spectroscopy), behavioral measurements, imaging transcriptomics and serum testing to uncover links between pandemic-related stressors and neuroinflammation. Healthy individuals examined after the enforcement of 2020 lockdown/stay-at-home measures demonstrated elevated brain levels of two independent neuroinflammatory markers (the 18 kDa translocator protein, TSPO, and myoinositol) compared to pre-lockdown subjects. The serum levels of two inflammatory markers (interleukin-16 and monocyte chemoattractant protein-1) were also elevated, although these effects did not reach statistical significance after correcting for multiple comparisons. Subjects endorsing higher symptom burden showed higher TSPO signal in the hippocampus (mood alteration, mental fatigue), intraparietal sulcus and precuneus (physical fatigue), compared to those reporting little/no symptoms. Post-lockdown TSPO signal changes were spatially aligned with the constitutive expression of several genes involved in immune/neuroimmune functions. This work implicates neuroimmune activation as a possible mechanism underlying the non-virally-mediated symptoms experienced by many during the COVID-19 pandemic. Future studies will be needed to corroborate and further interpret these preliminary findings
    • …
    corecore