10 research outputs found

    Bootstrapping Color Constancy

    Get PDF
    Bootstrapping provides a novel approach to training a neural network to estimate the chromaticity of the illuminant in a scene given image data alone. For initial training, the network requires feedback about the accuracy of the network’s current results. In the case of a network for color constancy, this feedback is the chromaticity of the incident scene illumination. In the past1, perfect feedback has been used, but in the bootstrapping method feedback with a considerable degree of random error can be used to train the network instead. In particular, the grayworld algorithm2, which only provides modest color constancy performance, is used to train a neural network which in the end performs better than the grayworld algorithm used to train it

    Gamut Constrained Illuminant Estimation

    No full text
    This paper presents a novel solution to the illuminant estimation problem: the problem of how, given an image of a scene taken under an unknown illuminant, we can recover an estimate of that light. The work is founded on previous gamut mapping solutions to the problem which solve for a scene illuminant by determining the set of diagonal mappings which take image data captured under an unknown light to a gamut of reference colours taken under a known light. Unfortunately a diagonal model is not always a valid model of illumination change and so previous approaches sometimes return a null solution. In addition, previous methods are difficult to implement. We address these problems by recasting the problem as one of illuminant classification: we define aprioria set of plausible lights thus ensuring that a scene illuminant estimate will always be found. A plausible light is represented by the gamut of colours observable under it and the illuminant in an image is classified by determining the plausible light whose gamut is most consistent with the image data. We show that this step (the main computational burden of the algorithm) can be performed simply, quickly, and efficiently by means of a non-negative least-squares optimisation. We report results on a large set of real images which show that it provides excellent illuminant estimation, outperforming previous algorithms. 1
    corecore