129 research outputs found

    Analysis of clinical profiles, deformities, and plantar pressure patterns in diabetic foot syndrome

    Get PDF
    Diabetic foot syndrome refers to heterogeneous clinical and biomechanical profiles, which render predictive models unsatisfactory. A valuable contribution may derive from identification and descriptive analysis of well-defined subgroups of patients. Clinics, biology, function, gait analysis, and plantar pressure variables were assessed in 78 patients with diabetes. In 15 of them, the 3D architecture of the foot bones was characterized by using weight-bearing CT. Patients were grouped by diabetes type (T1, T2), presence (DN) or absence (DNN) of neuropathy, and obesity. Glycated hemoglobin (HbA1c) and plantar lesions were monitored during a 48-month follow-up. Statistical analysis showed significant differences between the groups for at least one clinical (combined neuropathy score, disease duration, HbA1c), biological (age, BMI), functional (joint mobility, foot alignment), or biomechanical (regional peak pressure, pressure-time integral, cadence, velocity) variable. Twelve patients ulcerated during follow-up (22 lesions in total), distributed in all groups but not in the DNN T2 non-obese group. These showed biomechanical alterations, not always occurring at the site of lesion, and HbA1c and neuropathy scores higher than the expected range. Three of them, who also had weight-bearing CT analysis, showed >40% of architecture parameters outside the 95%CI. Appropriate grouping and profiling of patients based on multi-instrumental clinical and biomechanical analysis may help improve prediction modelling and management of diabetic foot syndrome

    Repeatability of skin-markers based kinematic measures from a multi-segment foot model in walking and running.

    Get PDF
    Skin-markers based multi-segment models are growing in popularity to assess foot joint kinematics in different motor tasks. However, scarce is the current knowledge of the effect of high-energy motor tasks, such as running, on the repeatability of these measurements. This study aimed at assessing and comparing the inter-trial, inter-session, and inter-examiner repeatability of skin-markers based foot kinematic measures in walking and running in healthy adults. The repeatability of 24 kinematic measures from an established multi-segment foot model were assessed in two volunteers during multiple barefoot walking and running trials by four examiners in three sessions. Statistical Parametric Mapping (1D-SPM) analysis was performed to assess the degree of shape-similarity between patterns of kinematic measurements. The average inter-trial variability across measurements (deg) was 1.0 ± 0.3 and 0.8 ± 0.3, the inter-session was 3.9 ± 1.4 and 4.4 ± 1.5, and the inter-examiner was 5.4 ± 2.3 and 5.7 ± 2.2, respectively in walking and running. Inter-session variability was generally similar between the two motor tasks, but significantly larger in running for two kinematic measures (p 0.01). Inter-examiner variability was generally larger than inter-trial and inter-session variability. While no significant differences in frame-by-frame offset variability was detected in foot kinematics between walking and running, 1D-SPM revealed that the shape of kinematic measurements was significantly affected by the motor task, with running being less repeatable than walking. Although confirmation on a larger population and with different kinematic protocols should be sought, attention should be paid in the interpretation of skin-markers based kinematics in running across sessions or involving multiple examiners

    Mechanical and in vitro biological properties of uniform and graded Cobalt-chrome lattice structures in orthopedic implants

    Get PDF
    Human bones are biological examples of functionally graded lattice capable to withstand large in vivo loading and allowing optimal stress distribution. Disruption of bone integrity may require biocompatible implants capable to restore the original bone structure and properties. This study aimed at comparing mechanical properties and biological behavior in vitro of uniform (POR-FIX) and graded (POR-VAR) Cobalt-chrome alloy lattice structures manufactured via Selective Laser Melting. In compression, the POR-VAR equivalent maximum stress was about 2.5 times lower than that of the POR-FIX. According to the DIC analysis, the graded lattice structures showed a stratified deformation associated to unit cells variation. At each timepoint, osteoblast cells were observed to colonize the surface and the first layer of both scaffolds. Cell activity was always significantly higher in the POR-VAR (p < 0.0005). In terms of gene expression, the OPG/RANKL ratio increased significantly over time (p < 0.0005) whereas IL1β and COX2 significantly decreased (7 day vs 1 day; p < 0.0005) in both scaffolds. Both uniform- and graded-porosity scaffolds provided a suitable environment for osteoblasts colonization and proliferation, but graded structures seem to represent a better solution to improve stress distribution between implant and bone of orthopedic implants

    Dimethyl-2-oxoglutarate improves redox balance and mitochondrial function in muscle pericytes of individuals with diabetes mellitus

    Get PDF
    Aims/hypothesis Treatment of vascular complications of diabetes remains inadequate. We reported that muscle pericytes (MPs) from limb muscles of vascular patients with diabetes mellitus display elevated levels of oxidative stress causing a dysfunctional phenotype. Here, we investigated whether treatment with dimethyl-2-oxoglutarate (DM-2OG), a tricarboxylic acid cycle metab- olite with antioxidant properties, can restore a healthy metabolic and functional phenotype. Methods MPs were isolated from limb muscles of diabetes patients with vascular disease (D-MPs) and from non-diabetic control participants (ND-MPs). Metabolic status was assessed in untreated and DM-2OG-treated (1 mmol/l) cells using an extracellular flux analyser and anion-exchange chromatography–mass spectrometry (IC-MS/MS). Redox status was measured using commercial kits and IC-MS/MS, with antioxidant and metabolic enzyme expression assessed by quanti- tative RT-PCR and western blotting. Myogenic differentiation and proliferation and pericyte–endothelial interaction were assessed as functional readouts. Results D-MPs showed mitochondrial dysfunction, suppressed glycolytic activity and reduced reactive oxygen species- buffering capacity, but no suppression of antioxidant systems when compared with ND-MP controls. DM-2OG supple- mentation improved redox balance and mitochondrial function, without affecting glycolysis or antioxidant systems. Nonetheless, this was not enough for treated D-MPs to regain the level of proliferation and myogenic differentiation of ND-MPs. Interestingly, DM-2OG exerted a positive effect on pericyte–endothelial cell interaction in the co-culture angiogenesis assay, independent of the diabetic status. Conclusions/interpretation These novel findings support the concept of using DM-2OG supplementation to improve pericyte redox balance and mitochondrial function, while concurrently allowing for enhanced pericyte–endothelial crosstalk. Such effects may help to prevent or slow down vasculopathy in skeletal muscles of people with diabetes

    Treatment of peripheral arterial disease in diabetes: a consensus of the Italian Societies of Diabetes (SID, AMD), Radiology (SIRM) and Vascular Endovascular Surgery (SICVE).

    Get PDF
    AbstractDiabetic foot (DF) is a chronic and highly disabling complication of diabetes. The prevalence of peripheral arterial disease (PAD) is high in diabetic patients and, associated or not with peripheral neuropathy (PN), can be found in 50% of cases of DF. It is worth pointing out that the number of major amputations in diabetic patients is still very high. Many PAD diabetic patients are not revascularised due to lack of technical expertise or, even worse, negative beliefs because of poor experience. This despite the progress obtained in the techniques of distal revascularisation that nowadays allow to reopen distal arteries of the leg and foot. Italy has one of the lowest prevalence rates of major amputations in Europe, and has a long tradition in the field of limb salvage by means of an aggressive approach in debridement, antibiotic therapy and distal revascularisation. Therefore, we believe it is appropriate to produce a consensus document concerning the treatment of PAD and limb salvage in diabetic patients, based on the Italian experience in this field, to share with the scientific community
    corecore