383 research outputs found

    Application of remote sensors in coastal zone observations

    Get PDF
    A review of processes taking place along coastlines and their biological consideration led to the determination of the elements which are required in the study of coastal structures and which are needed for better utilization of the resources from the oceans. The processes considered include waves, currents, and their influence on the erosion of coastal structures. Biological considerations include coastal fisheries, estuaries, and tidal marshes. Various remote sensors were analyzed for the information which they can provide and sites were proposed where a general ocean-observation plan could be tested

    Single Crystal Growth of Skutterudite CoP3 under High Pressure

    Full text link
    A new method to grow single crystals of skutterudite compounds is examined. Using a wedge-type, cubic-anvil, high-pressure apparatus, single crystals of CoP3 were grown from stoichiometric melts under a pressure of 3.5 GPa. Powder x-ray diffraction and electron probe microanalysis measurements indicate that the as-grown boules are a single phase of CoP3. The results suggest that CoP3 is a congruent melting compound under high pressure.Comment: 6pages,5 figures, J. Crystal Growth (in press

    Production of positronium chloride: A study of the charge exchange reaction between Ps and Cl−^{-}

    Full text link
    We present cross sections for the formation of positronium chloride (PsCl) in its ground state from the charge exchange between positronium (Ps) and chloride (Cl−^-) in the range of 10 meV - 100 eV Ps energy. We have used theoretical models based on the first Born approximation in its three-body formulation. We simulated the collisions between Ps and Cl−^- using ab-initio methods at both mean-field and correlated levels extrapolated to the complete basis set limit. We have investigated Ps excited states up to n=4{n=4}. The results suggest that the channel Ps(n=2{n=2}) is of particular interest for the production of PsCl in the ground state, and shows that an accurate treatment of the electronic correlation leads to a significant change in the global shape of the PsCl production cross section with respect to the mean-field level.Comment: 13 Pages, 7 Figures, 3 Table

    Testing of Milliwatt Power Source Components

    Get PDF
    A milliwatt power source (MPS) has been developed to satisfy the requirements of several potential solar system exploration missions. The MPS is a small power source consisting of three major components: a space qualified heat source (RHU), a thermopile (thermoelectric converter or TEC) and a container to direct the RHU heat to the TEC. Thermopiles from Hi-Z Technology, Inc. of San Diego and the Institute of Thermoelectricity of Chernivtsi Ukraine suitable for the MPS were tested and shown to perform as expected, producing 40 mW of power with a temperature difference of about 170°C. Such thermopiles were successfully life tested for up to a year. A MPS container designed and built by Swales Aerospace was tested with both a TEC simulator and actual TEC. The Swales unit, tested under dynamic vacuum, provided less temperature difference than anticipated, such that the TEC produced 20 mW of power with heat input equivalent to a RHU

    High-Temperature Transport Properties of Yb4−xSmxSb3

    Get PDF
    Polycrystalline L4Sb3 (L = La, Ce, Sm, and Yb) and Yb4−x Sm x Sb3, which crystallizes in the anti-Th3P4 structure type (I-43d no. 220), were synthesized via high-temperature reaction. Structural and chemical characterization were performed by x-ray diffraction and electronic microscopy with energy-dispersive x-ray analysis. Pucks were densified by spark plasma sintering. Transport property measurements showed that these compounds are n-type with low Seebeck coefficients, except for Yb4Sb3, which shows semimetallic behavior with hole conduction above 523 K. By partially substituting Yb by a trivalent rare earth we successfully improved the thermoelectric figure of merit of Yb4Sb3 up to 0.7 at 1273 K

    Metallization for Yb14MnSb11-Based Thermoelectric Materials

    Get PDF
    Thermoelectric materials provide a means for converting heat into electrical power using a fully solid-state device. Power-generating devices (which include individual couples as well as multicouple modules) require the use of ntype and p-type thermoelectric materials, typically comprising highly doped narrow band-gap semiconductors which are connected to a heat collector and electrodes. To achieve greater device efficiency and greater specific power will require using new thermoelectric materials, in more complex combinations. One such material is the p-type compound semiconductor Yb14MnSb11 (YMS), which has been demonstrated to have one of the highest ZT values at 1,000 C, the desired operational temperature of many space-based radioisotope thermoelectric generators (RTGs). Despite the favorable attributes of the bulk YMS material, it must ultimately be incorporated into a power-generating device using a suitable joining technology. Typically, processes such as diffusion bonding and/or brazing are used to join thermoelectric materials to the heat collector and electrodes, with the goal of providing a stable, ohmic contact with high thermal conductivity at the required operating temperature. Since YMS is an inorganic compound featuring chemical bonds with a mixture of covalent and ionic character, simple metallurgical diffusion bonding is difficult to implement. Furthermore, the Sb within YMS readily reacts with most metals to form antimonide compounds with a wide range of stoichiometries. Although choosing metals that react to form high-melting-point antimonides could be employed to form a stable reaction bond, it is difficult to limit the reactivity of Sb in YMS such that the electrode is not completely consumed at an operating temperature of 1,000 C. Previous attempts to form suitable metallization layers resulted in poor bonding, complete consumption of the metallization layer or fracture within the YMS thermoelement (or leg)

    First Principles Study of Zn-Sb Thermoelectrics

    Full text link
    We report first principles LDA calculations of the electronic structure and thermoelectric properties of ÎČ\beta -Zn4_{4}Sb3_{3}. The material is found to be a low carrier density metal with a complex Fermi surface topology and non-trivial dependence of Hall concentration on band filling. The band structure is rather covalent, consistent with experimental observations of good carrier mobility. Calculations of the variation with band filling are used to extract the doping level (band filling) from the experimental Hall number. At this band filling, which actually corresponds to 0.1 electrons per 22 atom unit cell, the calculated thermopower and its temperature dependence are in good agreement with experiment. The high Seebeck coefficient in a metallic material is remarkable, and arises in part from the strong energy dependence of the Fermiology near the experimental band filling. Improved thermoelectric performance is predicted for lower doping levels which corresponds to higher Zn concentrations.Comment: 5 pages, 6 figure

    Large Thermoelectric Power Factor in TiS2 Crystal with Nearly Stoichiometric Composition

    Full text link
    A TiS2_{2} crystal with a layered structure was found to have a large thermoelectric power factor.The in-plane power factor S2/ρS^{2}/ \rho at 300 K is 37.1~Ό\muW/K2^{2}cm with resistivity (ρ\rho) of 1.7 mΩ\Omegacm and thermopower (SS) of -251~Ό\muV/K, and this value is comparable to that of the best thermoelectric material, Bi2_{2}Te3_{3} alloy. The electrical resistivity shows both metallic and highly anisotropic behaviors, suggesting that the electronic structure of this TiS2_{2} crystal has a quasi-two-dimensional nature. The large thermoelectric response can be ascribed to the large density of state just above the Fermi energy and inter-valley scattering. In spite of the large power factor, the figure of merit, ZTZT of TiS2_{2} is 0.16 at 300 K, because of relatively large thermal conductivity, 68~mW/Kcm. However, most of this value comes from reducible lattice contribution. Thus, ZTZT can be improved by reducing lattice thermal conductivity, e.g., by introducing a rattling unit into the inter-layer sites.Comment: 11 pages, 4 figures, to be published in Physical Review
    • 

    corecore