8,391 research outputs found

    Helicity Parton Distributions at a Future Electron-Ion Collider: A Quantitative Appraisal

    Get PDF
    We present a quantitative assessment of the impact a future electron-ion collider will have on determinations of helicity quark and gluon densities and their contributions to the proton spin. Our results are obtained by performing a series of global QCD analyses at next-to-leading order accuracy based on realistic sets of pseudo-data for the inclusive and semi-inclusive deep-inelastic scattering of longitudinally polarized electrons and protons at different, conceivable center-of-mass system energies.Comment: 11 pages, 8 figure

    Colored Spin Systems, BKP Evolution and finite N_c effects

    Full text link
    Even within the framework of the leading logarithmic approximation the eigenvalues of the BKP kernel for states of more than three reggeized gluons are unknown in general, contrary to the planar limit case where the problem becomes integrable. We consider a 4-gluon kernel for a finite number of colors and define some simple toy models for the configuration space dynamics, which are directly solvable with group theoretical methods. Then we study the dependence of the spectrum of these models with respect to the number of colors and make comparisons with the large limit case.Comment: 17 pages, 4 figures, references update, to appear on EPJ

    Semi-supervised Analysis of Human fMRI Data

    Get PDF
    Kernel Canonical Correlation Analysis (KCCA) is a general technique for subspace learning that incorporates principal components analysis (PCA) and Fisher linear discriminant analysis (LDA) as special cases. By finding directions that maximize correlation, CCA learns representations tied more closely to underlying process generating the the data and can ignore high-variance noise directions. However, for data where acquisition in a given modality is expensive or otherwise limited, CCA may suffer from small sample effects. We propose to use semisupervised Laplacian regularization to utilize data that are present in only one modality. This approach is able to find highly correlated directions that also lie along the data manifold, resulting in a more robust estimate of correlated subspaces. Functional magnetic resonance imaging (fMRI) acquired data are naturally amenable to subspace techniques as data are well aligned. fMRI data of the human brain are a particularly interesting candidate. In this study we implemented various supervised and semi-supervised versions of CCA on human fMRI data, with regression to single and multivariate labels (corresponding to video content subjects viewed during the image acquisition). In each variate condition, the semi-supervised variants of CCA performed better than the supervised variants, including a supervised variant with Laplacian regularization. We additionally analyze the weights learned by the regression in order to infer brain regions that are important to different types of visual processing

    Next-to-leading BFKL phenomenology of forward-jet cross sections at HERA

    Full text link
    We show that the forward-jet measurements performed at HERA allow for a detailed study of corrections due to next-to-leading logarithms (NLL) in the Balitsky-Fadin-Kuraev-Lipatov (BFKL) approach. While the description of the d\sigma/dx data shows small sensitivity to NLL-BFKL corrections, these can be tested by the triple differential cross section d\sigma/dxdk_T^2dQ^2 recently measured. These data can be successfully described using a renormalization-group improved NLL kernel while the standard next-to-leading-order QCD or leading-logarithm BFKL approaches fail to describe the same data in the whole kinematic range. We present a detailed analysis of the NLL scheme and renormalization-scale dependences and also discuss the photon impact factors.Comment: 15 pages, 9 figures, new title, NLL-BFKL saddle-point approximation replaced by exact integratio

    Observation and absolute frequency measurements of the 1S0 - 3P0 optical clock transition in ytterbium

    Full text link
    We report the direct excitation of the highly forbidden (6s^2) 1S0 - (6s6p) 3P0 optical transition in two odd isotopes of ytterbium. As the excitation laser frequency is scanned, absorption is detected by monitoring the depletion from an atomic cloud at ~70 uK in a magneto-optical trap. The measured frequency in 171Yb (F=1/2) is 518,295,836,593.2 +/- 4.4 kHz. The measured frequency in 173Yb (F=5/2) is 518,294,576,850.0 +/- 4.4 kHz. Measurements are made with a femtosecond-laser frequency comb calibrated by the NIST cesium fountain clock and represent nearly a million-fold reduction in uncertainty. The natural linewidth of these J=0 to J=0 transitions is calculated to be ~10 mHz, making them well-suited to support a new generation of optical atomic clocks based on confinement in an optical lattice.Comment: 4 pages, 3 figure

    Curative effect of topical treatment of digital dermatitis with a gel containing activated copper and zinc chelate

    Get PDF
    The efficacy of two topical treatments for painful ulcerative stage (M2) of bovine digital dermatitis (BDD) lesions was compared in a clinical trial conducted on five dairy farms in 2009 to 2010. The first treatment was a water-based gel with active components copper and zinc (Intra Hoof-fit gel [IHF]) and the second treatment was a topical chlortetracycline spray (CTC spray). The experimental unit for this study was the hindleg with the presence of a BDD lesion. Cure was defined as the transition of an M2 lesion into a healed (M0) or a non-painful chronic stage (M4) of BDD at D28. On day 0, cows with M2 BDD lesions were photographed and were treated with either IHF or CTC. Subsequently, feet were photographed and scored on D28. The cure rate of M2 BDD lesions treated with IHF at D28 was 0.92 (CI 0.84 to 0.96) and was significantly better than for M2 BDD lesions treated with CTC, which was 0.58 (CI 0.47 to 0.68)

    Nonresonant control of multimode molecular wave packets at room temperature

    Get PDF
    Includes bibliographical references (pages 033001-4).We demonstrate the creation and measurement of shaped multimode vibrational wave packets with overtone and combination mode excitation in CCl4. Excitation of wave packets through nonresonant impulsive stimulated Raman scattering allows for coherent control of molecular vibrations without passing through an electronic resonance. This technique is therefore very general and can be implemented in a large class of molecular gases and liquids at STP, which were previously inaccessible because their resonances are in the VUV

    Generation of broadband VUV light using third-order cascaded processes

    Get PDF
    Includes bibliographical references (pages 013601-4).We report the first demonstration of broadband VUV light generation through cascaded nonlinear wave mixing in a gas. Using a hollow-fiber geometry to achieve broad-bandwidth phase-matching, frequency conversion of ultrashort-pulse Ti:sapphire laser pulses from the visible into the deep UV around 200 and160 nm is achieved. A new type of quasi-phase-matching is also observed in the VUV for the first time. Conversion using cascaded processes exhibits higher efficiencies, shorter pulse durations, and broader bandwidths than other schemes for generating light in the deep UV, and will enable many applications in science and technology
    corecore