26 research outputs found

    A survey of knowledge, attitudes and practices towards avian influenza in an adult population of Italy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several public health strategic interventions are required for effective prevention and control of avian influenza (AI) and it is necessary to create a communication plan to keep families adequately informed on how to avoid or reduce exposure. This investigation determined the knowledge, attitudes, and behaviors relating to AI among an adult population in Italy.</p> <p>Methods</p> <p>From December 2005 to February 2006 a random sample of 1020 adults received a questionnaire about socio-demographic characteristics, knowledge of transmission and prevention about AI, attitudes towards AI, behaviors regarding use of preventive measures and food-handling practices, and sources of information about AI.</p> <p>Results</p> <p>A response rate of 67% was achieved. Those in higher socioeconomic classes were more likely to identify the modes of transmission and the animals' vehicles for AI. Those older, who knew the modes of transmission and the animals' vehicles for AI, and who still need information, were more likely to know that washing hands soap before and after touching raw poultry meat and using gloves is recommended to avoid spreading of AI through food. The risk of being infected was significantly higher in those from lower socioeconomic classes, if they did not know the definition of AI, if they knew that AI could be transmitted by eating and touching raw eggs and poultry foods, and if they did not need information. Compliance with the hygienic practices during handling of raw poultry meat was more likely in those who perceived to be at higher risk, who knew the hygienic practices, who knew the modes of transmission and the animals' vehicles for AI, and who received information from health professionals and scientific journals.</p> <p>Conclusion</p> <p>Respondents demonstrate no detailed understanding of AI, a greater perceived risk, and a lower compliance with precautions behaviors and health educational strategies are strongly needed.</p

    Lack of Evidence for Human-to-Human Transmission of Avian Influenza A (H9N2) Viruses in Hong Kong, China 19991

    Get PDF
    In April 1999, isolation of avian influenza A (H9N2) viruses from humans was confirmed for the first time. H9N2 viruses were isolated from nasopharyngeal aspirate specimens collected from two children who were hospitalized with uncomplicated, febrile, upper respiratory tract illnesses in Hong Kong during March 1999. Novel influenza viruses have the potential to initiate global pandemics if they are sufficiently transmissible among humans. We conducted four retrospective cohort studies of persons exposed to these two H9N2 patients to assess whether human-to-human transmission of avian H9N2 viruses had occurred. No serologic evidence of H9N2 infection was found in family members or health-care workers who had close contact with the H9N2-infected children, suggesting that these H9N2 viruses were not easily transmitted from person to person

    Comparing estimates of influenza-associated hospitalization and death among adults with congestive heart failure based on how influenza season is defined

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is little consensus about how the influenza season should be defined in studies that assess influenza-attributable risk. The objective of this study was to compare estimates of influenza-associated risk in a defined clinical population using four different methods of defining the influenza season.</p> <p>Methods</p> <p>Using the Studies of Left Ventricular Dysfunction (SOLVD) clinical database and national influenza surveillance data from 1986–87 to 1990–91, four definitions were used to assess influenza-associated risk: (a) three-week moving average of positive influenza isolates is at least 5%, (b) three-week moving average of positive influenza isolates is at least 10%, (c) first and last positive influenza isolate are identified, and (d) 5% of total number of positive isolates for the season are obtained. The clinical data were from adults aged 21 to 80 with physician-diagnosed congestive heart failure. All-cause hospitalization and all-cause mortality during the influenza seasons and non-influenza seasons were compared using four definitions of the influenza season. Incidence analyses and Cox regression were used to assess the effect of exposure to influenza season on all-cause hospitalization and death using all four definitions.</p> <p>Results</p> <p>There was a higher risk of hospitalization associated with the influenza season, regardless of how the start and stop of the influenza season was defined. The adjusted risk of hospitalization was 8 to 10 percent higher during the influenza season compared to the non-influenza season when the different definitions were used. However, exposure to influenza was not consistently associated with higher risk of death when all definitions were used. When the 5% moving average and first/last positive isolate definitions were used, exposure to influenza was associated with a higher risk of death compared to non-exposure in this clinical population (adjusted hazard ratios [HR], 1.16; 95% confidence interval [CI], 1.04 to 1.29 and adjusted HR, 1.19; 95% CI, 1.06 to 1.33, respectively).</p> <p>Conclusion</p> <p>Estimates of influenza-attributable risk may vary depending on how influenza season is defined and the outcome being assessed.</p

    Impact of Emerging Antiviral Drug Resistance on Influenza Containment and Spread: Influence of Subclinical Infection and Strategic Use of a Stockpile Containing One or Two Drugs

    Get PDF
    BACKGROUND: Wide-scale use of antiviral agents in the event of an influenza pandemic is likely to promote the emergence of drug resistance, with potentially deleterious effects for outbreak control. We explored factors promoting resistance within a dynamic infection model, and considered ways in which one or two drugs might be distributed to delay the spread of resistant strains or mitigate their impact. METHODS AND FINDINGS: We have previously developed a novel deterministic model of influenza transmission that simulates treatment and targeted contact prophylaxis, using a limited stockpile of antiviral agents. This model was extended to incorporate subclinical infections, and the emergence of resistant virus strains under the selective pressure imposed by various uses of one or two antiviral agents. For a fixed clinical attack rate, R(0) rises with the proportion of subclinical infections thus reducing the number of infections amenable to treatment or prophylaxis. In consequence, outbreak control is more difficult, but emergence of drug resistance is relatively uncommon. Where an epidemic may be constrained by use of a single antiviral agent, strategies that combine treatment and prophylaxis are most effective at controlling transmission, at the cost of facilitating the spread of resistant viruses. If two drugs are available, using one drug for treatment and the other for prophylaxis is more effective at preventing propagation of mutant strains than either random allocation or drug cycling strategies. Our model is relatively straightforward, and of necessity makes a number of simplifying assumptions. Our results are, however, consistent with the wider body of work in this area and are able to place related research in context while extending the analysis of resistance emergence and optimal drug use within the constraints of a finite drug stockpile. CONCLUSIONS: Combined treatment and prophylaxis represents optimal use of antiviral agents to control transmission, at the cost of drug resistance. Where two drugs are available, allocating different drugs to cases and contacts is likely to be most effective at constraining resistance emergence in a pandemic scenario

    Cough aerosol in healthy participants: fundamental knowledge to optimize droplet-spread infectious respiratory disease management

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Influenza A H1N1 virus can be transmitted via direct, indirect, and airborne route to non-infected subjects when an infected patient coughs, which expels a number of different sized droplets to the surrounding environment as an aerosol. The objective of the current study was to characterize the human cough aerosol pattern with the aim of developing a standard human cough bioaerosol model for Influenza Pandemic control.</p> <p>Method</p> <p>45 healthy non-smokers participated in the open bench study by giving their best effort cough. A laser diffraction system was used to obtain accurate, time-dependent, quantitative measurements of the size and number of droplets expelled by the cough aerosol.</p> <p>Results</p> <p>Voluntary coughs generated droplets ranging from 0.1 - 900 microns in size. Droplets of less than one-micron size represent 97% of the total number of measured droplets contained in the cough aerosol. Age, sex, weight, height and corporal mass have no statistically significant effect on the aerosol composition in terms of size and number of droplets.</p> <p>Conclusions</p> <p>We have developed a standard human cough aerosol model. We have quantitatively characterized the pattern, size, and number of droplets present in the most important mode of person-to-person transmission of IRD: the cough bioaerosol. Small size droplets (< 1 μm) predominated the total number of droplets expelled when coughing. The cough aerosol is the single source of direct, indirect and/or airborne transmission of respiratory infections like the Influenza A H1N1 virus.</p> <p>Study design</p> <p>Open bench, Observational, Cough, Aerosol study</p

    Parallel evolution in the emergence of highly pathogenic avian influenza A viruses

    Get PDF
    Abstract: Parallel molecular evolution and adaptation are important phenomena commonly observed in viruses. Here, we exploit parallel molecular evolution to understand virulence evolution in avian influenza viruses (AIV). Highly-pathogenic AIVs evolve independently from low-pathogenic ancestors via acquisition of polybasic cleavage sites. Why some AIV lineages but not others evolve in this way is unknown. We hypothesise that the parallel emergence of highly-pathogenic AIV may be facilitated by permissive or compensatory mutations occurring across the viral genome. We combine phylogenetic, statistical and structural approaches to discover parallel mutations in AIV genomes associated with the highly-pathogenic phenotype. Parallel mutations were screened using a statistical test of mutation-phenotype association and further evaluated in the contexts of positive selection and protein structure. Our resulting mutational panel may help to reveal new links between virulence evolution and other traits, and raises the possibility of predicting aspects of AIV evolution

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Pathogenesis of Influenza A (H5N1) Virus Infection in a Primate Model

    No full text
    Cynomolgus macaques (Macaca fascicularis) infected with influenza virus A/Hong Kong/156/97 (H5N1) developed acute respiratory distress syndrome and fever associated with a necrotizing interstitial pneumonia. Reverse transcription PCR, virus isolation, and immunohistochemistry showed that the respiratory tract is the major target of the virus

    Decreased antibody response among nursing home residents who received recalled influenza vaccine and results of revaccination, 1996-97

    No full text
    In November 1996, 11 lots of one U.S. manufacturer's 1996-97 trivalent influenza vaccine were voluntarily recalled because of decreasing potency of the A/Nanchang/933/95 (H3N2) component. Because the elderly are at high risk of developing influenza-related complications, we assessed the postvaccination antibody titers of nursing home residents who received recalled vaccine and assessed the antibody response to revaccination. Blood samples were collected 3 weeks after vaccination from 86 residents at three nursing homes who received recalled vaccine and 86 residents at three other nursing homes who received a different manufacturer's vaccine. Medical records were reviewed. Residents of one nursing home were later revaccinated. Blood samples were collected on the day of revaccination and again in 3 weeks. Serum was tested by hemagglutination inhibition for antibody to all three components of the 1996-97 influenza vaccine. The geometric mean antibody titer (GMT) (33 vs 55; p = 0.01) and the percentage of residents with an antibody titer ≥1:40 (52 vs 67%; p = 0.04) to the A/Nanchang/933/95 component were lower among residents who received recalled vaccine compared to those who received non-recalled vaccine, but had similar GMTs against the other two vaccine components. After revaccination, the GMT to A/Nanchang/933/95 increased from 24 on the day of revaccination to 39 (p = 0.01) in residents from one nursing home. Therefore, vaccination with the recalled vaccine was associated with lower postvaccination antibody titers to A/Nanchang/933/95, but not against the other two vaccine components. Revaccination was moderately effective in increasing antibody titers. With annual changes in influenza vaccine strains, routine post-release stability testing of influenza vaccine should continue.Link_to_subscribed_fulltex

    Antibody response in individuals infected with avian influenza A (H5N1) viruses and detection of anti-H5 antibody among household and social contacts

    No full text
    The first documented outbreak of human respiratory disease caused by avian influenza A (H5N1) viruses occurred in Hong Kong in 1997. The kinetics of the antibody response to the avian virus in H5N1-infected persons was similar to that of a primary response to human influenza A viruses; serum neutralizing antibody was detected, in general, ≥14 days after symptom onset. Cohort studies were conducted to assess the risk of human-to-human transmission of the virus. By use of a combination of serologic assays, 6 of 51 household contacts, 1 of 26 tour group members, and none of 47 coworkers exposed to H5N1-infected persons were positive for H5 antibody. One H5 antibody-positive household contact, with no history of poultry exposure, provided evidence that human-to-human transmission of the avian virus may have occurred through close physical contact with H5N1-infected patients. In contrast, social exposure to case patients was not associated with H5N1 infection.Link_to_subscribed_fulltex
    corecore