194 research outputs found

    Parasite infection accelerates age polyethism in young honey bees

    Get PDF
    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens

    The coefficient of correction of effectiveness with the account of natural factors

    Get PDF
    The existing methods of determination of effectiveness don’t give the opportunity to emphasize the factors to the full extent. By which we can achieve the effect: the level of development of technologies, exploitation of natural resources, i,e. the damage to the environment etc. The economic damage, caused to the environment as a result of exploitation of natural resources and ecological violations at the given moment, doesn’t have a precise definition at the profound level. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/1280

    Three-body recombination rates near a Feshbach resonance within a two-channel contact interaction model

    Full text link
    We calculate the three-body recombination rate into a shallow dimer in a gas of cold bosonic atoms near a Feshbach resonance using a two-channel contact interaction model. The two-channel model naturally describes the variation of the scattering length through the Feshbach resonance and has a finite effective range. We confront the theory with the available experimental data and show that the two-channel model is able to quantitatively describe the existing data. The finite effective range leads to a reduction of the scaling factor between the recombination minima from the universal value of 22.7. The reduction is larger for larger effective ranges or, correspondingly, for narrower Feshbach resonances.Comment: 9 pages, 7 figure

    Methods to identify, study and understand End-user participation in HIT development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Experience has shown that for new health-information-technology (HIT) to be suc-cessful clinicians must obtain <it>positive clinical benefits </it>as a result of its implementation and <it>joint-ownership </it>of the decisions made during the development process. A prerequisite for achieving both success criteria is <it>real </it>end-user-participation. Experience has also shown that further research into developing improved methods to collect more detailed information on social groups participating in HIT development is needed in order to support, facilitate and improve real end-user participation.</p> <p>Methods</p> <p>A case study of an EHR planning-process in a Danish county from October 2003 until April 2006 was conducted using process-analysis. Three social groups (physicians, IT-professionals and administrators) were identified and studied in the <it>local, present </it>perspective. In order to understand the interactions between the three groups, the <it>national, historic </it>perspective was included through a literature-study. Data were collected through observations, interviews, insight gathered from documents and relevant literature.</p> <p>Results</p> <p>In the local, present perspective, the administrator's strategy for the EHR planning process meant that there was no clinical workload-reduction. This was seen as one of the main barriers to the physicians to achieving real influence. In the national, historic perspective, physicians and administrators have had/have different perceptions of the purpose of the patient record and they have both struggled to influence this definition. To date, the administrators have won the battle. This explains the conditions made available for the physicians' participation in this case, which led to their role being reduced to that of clinical consultants - rather than real participants.</p> <p>Conclusion</p> <p>In HIT-development the interests of and the balance of power between the different social groups involved are decisive in determining whether or not the end-users become real participants in the development process. Real end-user-participation is essential for the successful outcome of the process. By combining and developing existing theories and methods, this paper presents an improved method to collect more detailed information on social groups participating in HIT-development and their interaction during the development. This allows HIT management to explore new avenues during the HIT development process in order to support, facilitate and improve real end-user participation.</p

    Bound Chains of Tilted Dipoles in Layered Systems

    Full text link
    Ultracold polar molecules in multilayered systems have been experimentally realized very recently. While experiments study these systems almost exclusively through their chemical reactivity, the outlook for creating and manipulating exotic few- and many-body physics in dipolar systems is fascinating. Here we concentrate on few-body states in a multilayered setup. We exploit the geometry of the interlayer potential to calculate the two- and three-body chains with one molecule in each layer. The focus is on dipoles that are aligned at some angle with respect to the layer planes by means of an external eletric field. The binding energy and the spatial structure of the bound states are studied in several different ways using analytical approaches. The results are compared to stochastic variational calculations and very good agreement is found. We conclude that approximations based on harmonic oscillator potentials are accurate even for tilted dipoles when the geometry of the potential landscape is taken into account.Comment: 10 pages, 6 figures. Submitted to Few-body Systems special issue on Critical Stability, revised versio

    Thermodynamics of Dipolar Chain Systems

    Full text link
    The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects of the intralayer repulsion and quantum statistical requirements in systems with more than one chain. Specifically, we consider the case of two chains and solve the problem analytically within the harmonic Hamiltonian approach which is accurate for large dipole moments. The case of three chains is calculated numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments.Comment: 15 pages, 5 figures, final versio

    Efimov Trimers near the Zero-crossing of a Feshbach Resonance

    Full text link
    Near a Feshbach resonance, the two-body scattering length can assume any value. When it approaches zero, the next-order term given by the effective range is known to diverge. We consider the question of whether this divergence (and the vanishing of the scattering length) is accompanied by an anomalous solution of the three-boson Schr\"odinger equation similar to the one found at infinite scattering length by Efimov. Within a simple zero-range model, we find no such solutions, and conclude that higher-order terms do not support Efimov physics.Comment: 8 pages, no figures, final versio

    Dimers, Effective Interactions, and Pauli Blocking Effects in a Bilayer of Cold Fermionic Polar Molecules

    Full text link
    We consider a bilayer setup with two parallel planes of cold fermionic polar molecules when the dipole moments are oriented perpendicular to the planes. The binding energy of two-body states with one polar molecule in each layer is determined and compared to various analytic approximation schemes in both coordinate- and momentum-space. The effective interaction of two bound dimers is obtained by integrating out the internal dimer bound state wave function and its robustness under analytical approximations is studied. Furthermore, we consider the effect of the background of other fermions on the dimer state through Pauli blocking, and discuss implications for the zero-temperature many-body phase diagram of this experimentally realizable system.Comment: 18 pages, 10 figures, accepted versio

    The EndoC-βH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates

    Get PDF
    Objective: To characterize the EndoC-βH1 cell line as a model for human beta cells and evaluate its beta cell functionality, focusing on insulin secretion, proliferation, apoptosis and ER stress, with the objective to assess its potential as a screening platform for identification of novel anti-diabetic drug candidates. Methods: EndoC-βH1 was transplanted into mice for validation of in vivo functionality. Insulin secretion was evaluated in cells cultured as monolayer and as pseudoislets, as well as in diabetic mice. Cytokine induced apoptosis, glucolipotoxicity, and ER stress responses were assessed. Beta cell relevant mRNA and protein expression were investigated by qPCR and antibody staining. Hundreds of proteins or peptides were tested for their effect on insulin secretion and proliferation. Results: Transplantation of EndoC-βH1 cells restored normoglycemia in streptozotocin induced diabetic mice. Both in vitro and in vivo, we observed a clear insulin response to glucose, and, in vitro, we found a significant increase in insulin secretion from EndoC-βH1 pseudoislets compared to monolayer cultures for both glucose and incretins.Apoptosis and ER stress were inducible in the cells and caspase 3/7 activity was elevated in response to cytokines, but not affected by the saturated fatty acid palmitate.By screening of various proteins and peptides, we found Bombesin (BB) receptor agonists and Pituitary Adenylate Cyclase-Activating Polypeptides (PACAP) to significantly induce insulin secretion and the proteins SerpinA6, STC1, and APOH to significantly stimulate proliferation.ER stress was readily induced by Tunicamycin and resulted in a reduction of insulin mRNA. Somatostatin (SST) was found to be expressed by 1% of the cells and manipulation of the SST receptors was found to significantly affect insulin secretion. Conclusions: Overall, the EndoC-βH1 cells strongly resemble human islet beta cells in terms of glucose and incretin stimulated insulin secretion capabilities. The cell line has an active cytokine induced caspase 3/7 apoptotic pathway and is responsive to ER stress initiation factors. The cells' ability to proliferate can be further increased by already known compounds as well as by novel peptides and proteins. Based on its robust performance during the functionality assessment assays, the EndoC-βH1 cell line was successfully used as a screening platform for identification of novel anti-diabetic drug candidates. Keywords: EndoC-βH1, Pseudoislets, Glucose stimulated insulin secretion, Somatostatin signaling, Proliferatio
    corecore