38 research outputs found

    Biosynthesis of Vitamin C by Yeast Leads to Increased Stress Resistance

    Get PDF
    during respiration, or indirectly-caused by other stressing factors. Vitamin C or L-ascorbic acid acts as a scavenger of ROS, thereby potentially protecting cells from harmful oxidative products. While most eukaryotes synthesize ascorbic acid, yeast cells produce erythro-ascorbic acid instead. The actual importance of this antioxidant substance for the yeast is still a subject of scientific debate. is increased, but also the tolerance to low pH and weak organic acids at low pH is increased. cells endogenously producing vitamin C as a cellular model to study the genesis/protection of ROS as well as genotoxicity

    Integrated Proteomic and Metabolomic Analysis of an Artificial Microbial Community for Two-Step Production of Vitamin C

    Get PDF
    An artificial microbial community consisted of Ketogulonicigenium vulgare and Bacillus megaterium has been used in industry to produce 2-keto-gulonic acid (2-KGA), the precursor of vitamin C. During the mix culture fermentation process, sporulation and cell lysis of B. megaterium can be observed. In order to investigate how these phenomena correlate with 2-KGA production, and to explore how two species interact with each other during the fermentation process, an integrated time-series proteomic and metabolomic analysis was applied to the system. The study quantitatively identified approximate 100 metabolites and 258 proteins. Principal Component Analysis of all the metabolites identified showed that glutamic acid, 5-oxo-proline, L-sorbose, 2-KGA, 2, 6-dipicolinic acid and tyrosine were potential biomarkers to distinguish the different time-series samples. Interestingly, most of these metabolites were closely correlated with the sporulation process of B. megaterium. Together with several sporulation-relevant proteins identified, the results pointed to the possibility that Bacillus sporulation process might be important part of the microbial interaction. After sporulation, cell lysis of B. megaterium was observed in the co-culture system. The proteomic results showed that proteins combating against intracellular reactive oxygen stress (ROS), and proteins involved in pentose phosphate pathway, L-sorbose pathway, tricarboxylic acid cycle and amino acids metabolism were up-regulated when the cell lysis of B. megaterium occurred. The cell lysis might supply purine substrates needed for K. vulgare growth. These discoveries showed B. megaterium provided key elements necessary for K. vulgare to grow better and produce more 2-KGA. The study represents the first attempt to decipher 2-KGA-producing microbial communities using quantitative systems biology analysis

    Financial fragmentation and SMEs’ access to finance

    Get PDF
    This paper focuses on the impact of financial fragmentation on small and medium enterprises (SMEs)’ access to finance. We combine country-level data on financial fragmentation and the ECB’s SAFE (Survey on the Access to Finance of Enterprises) data for 12 European Union (EU) countries over 2009-2016. Our findings indicate that an increase in financial fragmentation not only raises the probability of all firms to be rationed but also to be charged higher loan rates; in addition, it increases the likelihood of borrower discouragement and it impairs firms’ perceptions of the future availability of bank funds. Less creditworthy firms are even more likely to become credit rationed, suggesting a flight to quality effect in lending. However, our study also documents a potential adverse effect of increasing bank market power resulting from greater integration. This suggests that financial integration could impair firms’ financing, if not accompanied by policy initiatives aimed at maintaining an optimal level of competition in the banking sector

    Microalgae as second generation biofuel. A review

    Full text link

    The use of microorganisms in L-ascorbic acid production

    No full text
    L-Ascorbic acid has been industrially produced for around 70 years. Over the past two decades, several innovative bioconversion systems have been proposed in order to simplify the long time market-dominating Reichstein method, a largely chemical synthesis by which still a considerable part of L-ascorbic acid is produced. Here, we describe the current state of biotechnological alternatives using bacteria, yeasts, and microalgae. We also discuss the potential for direct production of l-ascorbic acid exploiting novel bacterial pathways. The advantages of these novel approaches competing with current chemical and biotechnological processes are outlined
    corecore