274 research outputs found

    A three person poncho and a set of maracas:designing Ola De La Vida, a co-located social play computer game

    Get PDF
    Events that bring people together to play video games as a social experience are growing in popularity across the western world. Amongst these events are ‘play parties,’ temporary social play environments which create unique shared play experiences for attendees unlike anything they could experience elsewhere. This paper explores co-located play experience design and proposes that social play games can lead to the formation of temporary play communities. These communities may last for a single gameplay session, for a whole event, or beyond the event. The paper analyses games designed or enhanced by social play contexts and evaluates a social play game, Ola de la Vida. The research findings suggest that social play games can foster community through the design of game play within the game itself, through curation which enhances their social potential, and through design for ‘semi-spectatorship’, which blurs the boundaries between player and spectator thus widening the game’s magic circle

    Frequency spectra of cosmic ray air shower radio emission measured with LOPES

    Get PDF
    Aims. We wish to study the spectral dependence of the radio emission from cosmic-ray air showers around .Methods. We observe short radio pulses in a broad frequency band with the dipole-interferometer LOPES (LOFAR Prototype Station), which is triggered by a particle detector array named Karlsruhe Shower Core and Array Detector (KASCADE). LOFAR is the Low Frequency Array. For this analysis, 23 strong air shower events are selected using parameters from KASCADE. The radio data are digitally beam-formed before the spectra are determined by sub-band filtering and fast Fourier transformation.Results. The resulting electric field spectra fall off to higher frequencies. An average electric field spectrum is fitted with an exponential and , or alternatively, with a power law and a spectral index of . The spectral slope obtained is not consistent within uncertainties and it is slightly steeper than the slope obtained from Monte Carlo simulations based on air showers simulated with CORSIKA (Cosmic Ray Simulations for KASCADE). For the analyzed sample of LOPES events, we do not find any significant dependence of the spectral slope on the electric field amplitude, the azimuth angle, the zenith angle, the curvature radius, nor on the average distance of the antennae from the shower core position. But one of the strongest events was measured during thunderstorm activity in the vicinity of LOPES and shows the longest pulse length measured of and a spectral slope of .Conclusions. We show with two different methods that frequency spectra from air shower radio emission can be reconstructed on event-by-event basis, with only two dozen dipole antennae simultaneously over a broad range of frequencies. According to the obtained spectral slopes, the maximum power is emitted below 40 MHz. Furthermore, the decrease in power to higher frequencies indicates a loss in coherence determined by the shower disc thickness. We conclude that a broader bandwidth, larger collecting area, and longer baselines, as will be provided by LOFAR, are necessary to further investigate the relation of the coherence, pulse length, and spectral slope of cosmic ray air showers

    KASCADE-Grande Limits on the Isotropic Diffuse Gamma-Ray Flux between 100 TeV and 1 EeV

    Get PDF
    KASCADE and KASCADE-Grande were multi-detector installations to measure individual air showers of cosmic rays at ultra-high energy. Based on data sets measured by KASCADE and KASCADE-Grande, 90% C.L. upper limits to the flux of gamma-rays in the primary cosmic ray flux are determined in an energy range of 1014−1018{10}^{14} - {10}^{18} eV. The analysis is performed by selecting air showers with a low muon content as expected for gamma-ray-induced showers compared to air showers induced by energetic nuclei. The best upper limit of the fraction of gamma-rays to the total cosmic ray flux is obtained at 3.7×10153.7 \times {10}^{15} eV with 1.1×10−51.1 \times {10}^{-5}. Translated to an absolute gamma-ray flux this sets constraints on some fundamental astrophysical models, such as the distance of sources for at least one of the IceCube neutrino excess models.Comment: Published in The Astrophysical Journal, Volume 848, Number 1. Posted on: October 5, 201

    The wavefront of the radio signal emitted by cosmic ray air showers

    Get PDF
    Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above 1017 10^{17}\,eV and zenith angles smaller than 45∘45^\circ, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances ≳50 \gtrsim 50\,m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately 140 140\,g/cm2^2. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, XmaxX_\mathrm{max}, better than 30 30\,g/cm2^2. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.Comment: accepted by JCA
    • 

    corecore