45 research outputs found

    Influence de la déforestation sur le fonctionnement hydrologique de petits bassins versants tropicaux

    Get PDF
    Les rĂ©gions tropicales subissent une dĂ©forestation importante. En AmĂ©rique du Sud,la forĂȘt est gĂ©nĂ©ralement remplacĂ©e par une prairie, C'est pourquoi nous avons Ă©tudiĂ© le comportement hydrologique de 2 petits (1,5 ha) bassins versants. Un bassin (bassin B) est recouvert par une forĂȘt primaire, tandis que le second (bassin A) a Ă©tĂ© dĂ©frichĂ© et transformĂ© en prairie (Digitaria swazilandensis, programme ÉCÉREX, ORSTOM/CTFT). Ces bassins, situĂ©s en Guyane Française, sont proches (500 m), escarpĂ©s et principalement constituĂ©s par des sols Ă  drainage vertical ralenti. Le climat est de type tmpical humide avec une tempĂ©rature moyenne (26 °C) et des prĂ©cipitations moyennes annuelles (3500 Ă  3900 mm/an) Ă©levĂ©es. L'Ă©vapotranspiration rĂ©elle et potentielle de la forĂȘt primaire sont respectivement Ă©gales Ă  1470 mm/an et 1565 mm/an, En pĂ©riode d'Ă©tiage, nous avons observĂ© un Ă©coulement permanent Ă  l'exutoire du bassin A, alors que le bassin B en est dĂ©pourvu. Deux crues (24 mai 1992 et 15 mai 1993) ont Ă©tĂ© Ă©tudiĂ©es, simultanĂ©ment sur les 2 bassins. Pendant les crues, nous avons prĂ©levĂ© des Ă©chantillons d'eau des prĂ©cipitations (pluie et pluviolessivat), des ruisseaux et du sol. Sur ces sites, l'eau circulant dans les couches peu profondes du sol prĂ©sente une concentration Ă©levĂ©e en K+ et faible en Cl-. Une signature opposĂ©e caractĂ©rise l'eau des couches pmfondes du sol. L'analyse des relations existant entre les traceurs chimiques (K+, Cl-) et isotopique l80) ainsi l'Ă©tude des propriĂ©tĂ©s hydrodynamiques du sol permet de dĂ©composer qualitativement l'hydrogramme de crue en 3 rĂ©servoirs: sol superficiel (Ă©coulement hypodermique), sol intermĂ©diaire (de 0 Ă  - 0,4 m), sol profond (bassin B) ou nappe (bassin A). Une dĂ©composition quantitative a Ă©tĂ© effectuĂ©e en utilisant des traceurs chimique (Cl-) et isotopique l80). Nous avons ainsi montrĂ© que les crues sur les 2 bassins sont dominĂ©es par l'Ă©coulement issu des couches intermĂ©diaires du sol qui reprĂ©sente environ la moitiĂ© de l'Ă©coulement total de crue. Cependant,les mĂ©canismes de gĂ©nĂ©ration des crues diffĂšrent sur les 2 bassins. Sur le bassin A, les couches profondes du sol sont saturĂ©es avant la crue et participent donc Ă  la totalitĂ© de la crue. Au contraire, sur le bassin B, les couches profondes de sol atteignent la saturation peu de temps avant le pic de crue et participent donc essentiellement aux Ă©coulement pendant la dĂ©crue. Ces rĂ©sultats confirment les Ă©tudes hydrologiques rĂ©alisĂ©es prĂ©cĂ©demment (FRITSCH, 199Ù) et permettent d'identifier les mĂ©canismes de genĂšse des crues et ainsi de mettre en Ă©vidence l'effet de la dĂ©forestation.The tropical regions are subjected to fast deforestation. In South America, the tropical rain forest is being replaced by grassland. Thus, we have studied the hydrological behaviour of two small (1.5 ha) watersheds. One basin (hereafter named "B" basin) is still covered by primary forest while the second one (hereafter named "A" basin) was cleared and transformed to grassland (Digitaria swazilandensis, ÉCÉREX program, supported by ORSTOM/CTFT). These basins, located in French Guyana, are close to one another (500 m), steep, and are principally constituted of soils showing lateral drainage. The tropical humid climate is characterized by a high mean interannual temperature (26ÂĄC), which varies slightly from month to month, and by a high mean annual precipitation (3500 to 3900 mm yr-1). Precipitation mainly occurs during the main wet season from May to June and during a secondary wet season from December to January. Real evapotranspiration of the natural forest is 1470 mm yr-1 and potential evapotranspiration is 1565 mm yr-1. During the low-water level period, we have observed perennial runoff at the outlet at the "A" basin while the "B" basin is without permanent flow. We have studied two runoff events (24 May 1992 and 15 May 1993) in both basins. On 24 May 1992, the runoff event was caused by a rainfall lasting for about 10 hours. Total precipitation was 53.8 mm. The main event amounted to 32 mm. The main peak of the hydrograph corresponded to the heaviest rainfalls. On 15 May 1993, the runoff event was caused by a rain lasting for about 13 hours. Total precipitation was 64.0 mm. The main peak of the hydrograph (86.2 L s-1) corresponded again to the heaviest rainfalls. Spatial variability of the precipitation amount was high, especially for the most intense events that have the largest standard deviations. Interception by the canopy amounted to 5.3% of the rainfall in 1992 and 4.3% in 1993. High rapid runoff coefficients were observed, i.e., 0.28 for 24 May 1992 and 0.43 for 15 May 1993. No overland flow was observed in the watershed.Samples of rainwater, throughfall, stream water, and soil water were regularly collected in both watersheds during the runoff events. Temporal variations in the isotopic composition of the stream water at the outlet of the watershed paralleled variations in rainwater but with a distinct shift. The difference between the two signatures could be due to a mixture between:- Rainwater and water present in the watershed before the event and whose isotopic composition is different and variable over space. - Rainwater and water originating from various reservoirs whose contribution to the stream varies with time. The analysis of runoff events using the isotope tracer method revealed the existence in the stream of a mixture of water originating from rain and from one or several other reservoirs in the watershed. Isotope tracers alone were not sufficient to estimate the depth of the soil water contributing to the runoff event. On one hand, temporal variability in the isotopic composition of rainwater was very similar to the vertical spatial variability in the isotopic composition of soil water. On the other hand, surface evaporation in the watershed was negligible: the isotopic signature of water originating from soil during runoff events was the consequence of successive infiltrated rain events. Oxygen-18 content in rain water strongly varied with time but only slightly with space because of the small area of the watershed. Because of this temporal variability, an average isotope content of rainwater could not be used when calculating the contribution of "new water" at the outlet of the watershed.Using chemical and isotope tracers is a way to identify and quantify the contribution of the various water reservoirs to runoff. We were thus able to separate runoff hydrographs into simple components (water from superficial layer, intermediate layer and deep layer). In these watersheds, shallow water was characterized by relatively high concentration in potassium and very low concentration in chloride. An opposite signature characterized deep waterA "deep water" chemical tracer (chloride) - isotope tracer (18O) diagram shows the evidence of a hysteresis relationship:1. The decreasing limb of this relationship (rising segment of the hydrograph) is due to a decrease in heavy isotope content resulting from the decrease of oxygen-18 content in the precipitation and from the arrival of water from upper soil layers with low concentrations of chloride. 2. The increasing limb (falling segment of the hydrograph and recession) is associated with the arrival at the outlet of deep waters containing relatively high concentrations of chloride and heavy isotopes. Using chemical (Cl-) and isotope (18O) tracers, quantitative hydrograph separation was achieved with a simple 2- or 3- component conservative-mixing model. This information allowed qualitative hydrograph separation into 3 reservoirs: superficial soil layers, intermediate soil layers (0 to -0.4 m), deep soil layers ("B" watershed) or ground water ("A" watershed).Thus, the runoff event of both basins was dominated by the intermediate soil layers reservoir, which represents half of the total flow for both basins. However, the processes of runoff generation differ: in the "A" watershed, the deep soil layers were saturated before the rain: the contribution is significant throughout the runoff . In the "B" watershed, the deep soil layers become saturated a few times before the peak flow: their contribution dominates during the recession. These results confirm previous hydrological studies (Fritsch, 1990), which showed the high reactivity of the watershed, and give a better insight into the mechanisms involved.Some of these observations can also be used at a larger scale: 1. Identification of the reservoirs contributing to the runoff event by analyzing the relationships between oxygen-18 content and the flow rate, and between isotope and chemical tracers. 2. Simultaneous samplings along the stream in order to detect a possible zonation of the watershed. These samples must be taken during a runoff event as well as during a low-water level period to check whether the tracer concentrations in the continuous or discontinuous water table supplying the stream are heterogeneous. If the signature of the water table is heterogeneous or if the stream is supplied by several water tables with different chemical concentrations, the watershed must be divided into several homogeneous sub-watersheds

    Rational Design of Protein Stability: Effect of (2S,4R)-4-Fluoroproline on the Stability and Folding Pathway of Ubiquitin

    Get PDF
    BACKGROUND: Many strategies have been employed to increase the conformational stability of proteins. The use of 4-substituted proline analogs capable to induce pre-organization in target proteins is an attractive tool to deliver an additional conformational stability without perturbing the overall protein structure. Both, peptides and proteins containing 4-fluorinated proline derivatives can be stabilized by forcing the pyrrolidine ring in its favored puckering conformation. The fluorinated pyrrolidine rings of proline can preferably stabilize either a C(γ)-exo or a C(γ)-endo ring pucker in dependence of proline chirality (4R/4S) in a complex protein structure. To examine whether this rational strategy can be generally used for protein stabilization, we have chosen human ubiquitin as a model protein which contains three proline residues displaying C(γ)-exo puckering. METHODOLOGY/PRINCIPAL FINDINGS: While (2S,4R)-4-fluoroproline ((4R)-FPro) containing ubiquitinin can be expressed in related auxotrophic Escherichia coli strain, all attempts to incorporate (2S,4S)-4-fluoroproline ((4S)-FPro) failed. Our results indicate that (4R)-FPro is favoring the C(γ)-exo conformation present in the wild type structure and stabilizes the protein structure due to a pre-organization effect. This was confirmed by thermal and guanidinium chloride-induced denaturation profile analyses, where we observed an increase in stability of -4.71 kJ·mol(-1) in the case of (4R)-FPro containing ubiquitin ((4R)-FPro-ub) compared to wild type ubiquitin (wt-ub). Expectedly, activity assays revealed that (4R)-FPro-ub retained the full biological activity compared to wt-ub. CONCLUSIONS/SIGNIFICANCE: The results fully confirm the general applicability of incorporating fluoroproline derivatives for improving protein stability. In general, a rational design strategy that enforces the natural occurring proline puckering conformation can be used to stabilize the desired target protein

    Electron shuttle-mediated microbial Fe(III) reduction under alkaline conditions

    Get PDF
    Purpose: Extracellular Fe(III) reduction plays an important role in a variety of biogeochemical processes. Several mechanisms for microbial Fe(III) reduction in pH-neutral environments have been proposed, but pathways of microbial Fe(III) reduction within alkaline conditions have not been clearly identified. Alkaline soils are vastly distributed; thus, a better understanding of microbial Fe(III) reduction under alkaline conditions is of significance. The purpose of this study is to explore the dominant mechanism of bacterial iron reduction in alkaline environments. Materials and methods: We used antraquinone-2,6-disulfonate (AQDS) as a representative of quinone moities of humic substances and elemental sulfur and sulfate as sulfur species to investigate the potential role of humic substances and sulfur species in mediating microbial Fe(III) reduction in alkaline environments. We carried out thermodynamic calculations to predict the ability of bacteria to reduce Fe(III) (oxyhydr)oxides under alkaline conditions and the ability of AQDS and sulfur species to serve as electron acceptors for microbial anaerobic respiration in an assumed alkaline soil environments. A series of incubation experiments with two model dissimilatory metal reducing bacteria, Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA as well as mixed bacteria enriched from a soil were performed to confirm the contribution of AQDS and sulfur species to Fe(III) reduction under alkaline conditions. Results and discussion: Based on thermodynamic calculations, we predicted that, under alkaline conditions, the enzymatic reduction of Fe(III) (oxyhydr)oxides would be thermodynamically feasible but very weak. In our incubation experiments, the reduction of ferrihydrite by anaerobic cultures of Shewanella oneidensis MR-1, Geobacter sulfurreducens PCA or microbes enriched from a soil was significantly increased in the presence of S0 or AQDS. Notably, AQDS contributed more to promoting Fe(III) reduction as a soluble electron shuttle than S0 did under the alkaline conditions probably because of different mechanisms of microbial utilization of AQDS and S0. Conclusions: These results suggest that microbial reduction of Fe(III) (oxyhydr)oxides under alkaline conditions may proceed via a pathway mediated by electron shuttles such as AQDS and S0. Considering the high ability of electron shuttling and vast distribution of humic substances, we suggest that humic substance-mediated Fe(III) reduction may potentially be the dominant mechanism for Fe(III) reduction in alkaline environments

    EMBO Rep.

    No full text

    Dynamic Interaction- and Phospho-Proteomics Reveal Lck as a Major Signaling Hub of CD147 in T Cells

    No full text
    Numerous publications have addressed CD147 as a tumor marker and regulator of cytoskeleton, cell growth, stress response, or immune cell function; however, the molecular functionality of CD147 remains incompletely understood. Using affinity purification, mass spectrometry, and phosphopeptide enrichment of isotope-labeled peptides, we examined the dynamic of the CD147 microenvironment and the CD147-dependent phosphoproteome in the Jurkat T cell line upon treatment with T cell stimulating agents. We identified novel dynamic interaction partners of CD147 such as CD45, CD47, GNAI2, Lck, RAP1B, and VAT1 and, furthermore, found 76 CD147dependent phosphorylation sites on 57 proteins. Using the STRING protein network database, a network between the CD147 microenvironment and the CD147-dependent phosphoproteins was generated and led to the identification of key signaling hubs around theG proteins RAP1B and GNB1, the kinases PKC beta, PAK2, Lck, and CDK1, and the chaperone HSPA5. Gene ontology biological process term analysis revealed that wound healing-, cytoskeleton-, immune system-, stress response-, phosphorylation-and protein modification-, defense response to virus-, and TNF production-associated terms are enriched within the microenvironment and the phosphoproteins of CD147. With the generated signaling network and gene ontology biological process term grouping, we identify potential signaling routes of CD147 affecting T cell growth and function
    corecore