42 research outputs found

    Microbial and Chemical Characterization of Underwater Fresh Water Springs in the Dead Sea

    Get PDF
    Due to its extreme salinity and high Mg concentration the Dead Sea is characterized by a very low density of cells most of which are Archaea. We discovered several underwater fresh to brackish water springs in the Dead Sea harboring dense microbial communities. We provide the first characterization of these communities, discuss their possible origin, hydrochemical environment, energetic resources and the putative biogeochemical pathways they are mediating. Pyrosequencing of the 16S rRNA gene and community fingerprinting methods showed that the spring community originates from the Dead Sea sediments and not from the aquifer. Furthermore, it suggested that there is a dense Archaeal community in the shoreline pore water of the lake. Sequences of bacterial sulfate reducers, nitrifiers iron oxidizers and iron reducers were identified as well. Analysis of white and green biofilms suggested that sulfide oxidation through chemolitotrophy and phototrophy is highly significant. Hyperspectral analysis showed a tight association between abundant green sulfur bacteria and cyanobacteria in the green biofilms. Together, our findings show that the Dead Sea floor harbors diverse microbial communities, part of which is not known from other hypersaline environments. Analysis of the water’s chemistry shows evidence of microbial activity along the path and suggests that the springs supply nitrogen, phosphorus and organic matter to the microbial communities in the Dead Sea. The underwater springs are a newly recognized water source for the Dead Sea. Their input of microorganisms and nutrients needs to be considered in the assessment of possible impact of dilution events of the lake surface waters, such as those that will occur in the future due to the intended establishment of the Red Sea−Dead Sea water conduit

    MIT-skywalker

    No full text
    The ability to walk is important for independent living and when this capacity is affected by neurological injury, gait therapy is the traditional approach to re-train the nervous system. The importance of this problem is illustrated by the approximately 5.8 million stroke survivors alive in the US today and an estimated additional 700,000 strokes occurring each year, many requiring gait therapy. This manuscript presents the design and proof-of-concept testing for a novel device to deliver gait therapy. While robotic devices to train gait therapy exist, none of them take advantage of the concept of passive walkers and most of them impose the kinematics of unimpaired gait on impaired walkers. Yet research has found that proper neural input and stimulation is a critical factor for an efficacious therapy program. This novel device might afford a more ecological gait therapy including heel-strike

    Bioextraction of copper from printed circuit boards: influence of initial concentration of ferrous iron

    No full text
    Printed circuit boards are found in all electric and electronic equipment and are particulary problematic to recycle because of the heterogeneous mix of organic material, metals, and fiberglass. Additionally, printed circuit boards can be considered a secondary source of copper and bacterial leaching can be applied to copper recovery.FAPES
    corecore