198 research outputs found
Spin, Statistics, and Reflections, II. Lorentz Invariance
The analysis of the relation between modular PCT-symmetry -- a
consequence of the Unruh effect -- and Pauli's spin-statistics relation is
continued. The result in the predecessor to this article is extended to the
Lorentz symmetric situation. A model \G_L of the universal covering
\widetilde{L_+^\uparrow}\cong SL(2,\complex) of the restricted Lorentz group
is modelled as a reflection group at the classical level. Based
on this picture, a representation of \G_L is constructed from pairs of
modular PCT-conjugations, and this representation can easily be verified to
satisfy the spin-statistics relation
Beam-Breakup Instability Theory for Energy Recovery Linacs
Here we will derive the general theory of the beam-breakup instability in
recirculating linear accelerators, in which the bunches do not have to be at
the same RF phase during each recirculation turn. This is important for the
description of energy recovery linacs (ERLs) where bunches are recirculated at
a decelerating phase of the RF wave and for other recirculator arrangements
where different RF phases are of an advantage. Furthermore it can be used for
the analysis of phase errors of recirculated bunches. It is shown how the
threshold current for a given linac can be computed and a remarkable agreement
with tracking data is demonstrated. The general formulas are then analyzed for
several analytically solvable cases, which show: (a) Why different higher order
modes (HOM) in one cavity do not couple so that the most dangerous modes can be
considered individually. (b) How different HOM frequencies have to be in order
to consider them separately. (c) That no optics can cause the HOMs of two
cavities to cancel. (d) How an optics can avoid the addition of the
instabilities of two cavities. (e) How a HOM in a multiple-turn recirculator
interferes with itself. Furthermore, a simple method to compute the orbit
deviations produced by cavity misalignments has also been introduced. It is
shown that the BBU instability always occurs before the orbit excursion becomes
very large.Comment: 12 pages, 6 figure
Diamonds's Temperature: Unruh effect for bounded trajectories and thermal time hypothesis
We study the Unruh effect for an observer with a finite lifetime, using the
thermal time hypothesis. The thermal time hypothesis maintains that: (i) time
is the physical quantity determined by the flow defined by a state over an
observable algebra, and (ii) when this flow is proportional to a geometric flow
in spacetime, temperature is the ratio between flow parameter and proper time.
An eternal accelerated Unruh observer has access to the local algebra
associated to a Rindler wedge. The flow defined by the Minkowski vacuum of a
field theory over this algebra is proportional to a flow in spacetime and the
associated temperature is the Unruh temperature. An observer with a finite
lifetime has access to the local observable algebra associated to a finite
spacetime region called a "diamond". The flow defined by the Minkowski vacuum
of a (four dimensional, conformally invariant) quantum field theory over this
algebra is also proportional to a flow in spacetime. The associated temperature
generalizes the Unruh temperature to finite lifetime observers.
Furthermore, this temperature does not vanish even in the limit in which the
acceleration is zero. The temperature associated to an inertial observer with
lifetime T, which we denote as "diamond's temperature", is 2hbar/(pi k_b
T).This temperature is related to the fact that a finite lifetime observer does
not have access to all the degrees of freedom of the quantum field theory.Comment: One reference correcte
A New Approach to Spin and Statistics
We give an algebraic proof of the spin-statistics connection for the
parabosonic and parafermionic quantum topological charges of a theory of local
observables with a modular PCT-symmetry. The argument avoids the use of the
spinor calculus and also works in 1+2 dimensions. It is expected to be a
progress towards a general spin-statistics theorem including also
(1+2)-dimensional theories with braid group statistics.Comment: LATEX, 15 pages, no figure
Coupled-Bunch Beam Breakup due to Resistive-Wall Wake
The coupled-bunch beam breakup problem excited by the resistive wall wake is
formulated. An approximate analytic method of finding the asymptotic behavior
of the transverse bunch displacement is developed and solved.Comment: 8 page
Recommended from our members
A proposed high-power UV industrial demonstration laser at CEBAF
The Laser Processing Consortium, a collaboration of industries, universities, and the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, Virginia, has proposed building a demonstration industrial processing laser for surface treatment and micro-machining. The laser is a free-electron laser (FEL) with average power output exceeding 1 kW in the ultraviolet (UV). The design calls for a novel driver accelerator that recovers most of the energy of the exhaust electron beam to produce laser light with good wall-plug efficiency. The laser and accelerator design use technologies that are scalable to much higher power. The authors describe the critical design issues in the laser such as the stability, power handling, and losses of the optical resonator, and the quality, power, and reliability of the electron beam. They also describe the calculated laser performance. Finally progress to date on accelerator development and resonator modeling will be reported
A Distinguished Vacuum State for a Quantum Field in a Curved Spacetime: Formalism, Features, and Cosmology
We define a distinguished "ground state" or "vacuum" for a free scalar
quantum field in a globally hyperbolic region of an arbitrarily curved
spacetime. Our prescription is motivated by the recent construction of a
quantum field theory on a background causal set using only knowledge of the
retarded Green's function. We generalize that construction to continuum
spacetimes and find that it yields a distinguished vacuum or ground state for a
non-interacting, massive or massless scalar field. This state is defined for
all compact regions and for many noncompact ones. In a static spacetime we find
that our vacuum coincides with the usual ground state. We determine it also for
a radiation-filled, spatially homogeneous and isotropic cosmos, and show that
the super-horizon correlations are approximately the same as those of a thermal
state. Finally, we illustrate the inherent non-locality of our prescription
with the example of a spacetime which sandwiches a region with curvature
in-between flat initial and final regions
Fluoroquinolones and the Risk for Methicillin-resistant Staphylococcus aureus in Hospitalized Patients1
To determine whether fluoroquinolone exposure is a risk factor for the isolation of Staphylococcus aureus and whether the effect is different for methicillin-resistant S. aureus (MRSA) versus methicillin-susceptible S. aureus (MSSA), we studied two case groups. The first case group included 222 patients with nosocomially acquired MRSA. The second case group included 163 patients with nosocomially acquired MSSA. A total of 343 patients admitted concurrently served as controls. Outcome measures were the adjusted odds ratio (OR) for isolation of MRSA and MSSA after fluoroquinolone exposure. Exposure to both levofloxacin (OR 5.4; p < 0.0001) and ciprofloxacin (OR 2.2; p < 0.003) was associated with isolation of MRSA but not MSSA. After adjustment for multiple variables, both drugs remained risk factors for MRSA (levofloxacin OR 3.4; p < 0.0001; ciprofloxacin OR 2.5; p = 0.005) but not MSSA. Exposure to levofloxacin or ciprofloxacin is a significant risk factor for the isolation of MRSA, but not MSSA
On local boundary CFT and non-local CFT on the boundary
The holographic relation between local boundary conformal quantum field
theories (BCFT) and their non-local boundary restrictions is reviewed, and
non-vacuum BCFT's, whose existence was conjectured previously, are constructed.Comment: 16 pages. Contribution to "Rigorous Quantum Field Theory", Symposium
in honour of J. Bros, Paris, July 2004. Based on joint work math-ph/0405067
with R. Long
- …