336 research outputs found

    Theory of x-ray absorption by laser-aligned symmetric-top molecules

    Full text link
    We devise a theory of x-ray absorption by symmetric-top molecules which are aligned by an intense optical laser. Initially, the density matrix of the system is composed of the electronic ground state of the molecules and a thermal ensemble of rigid-rotor eigenstates. We formulate equations of motion of the two-color (laser plus x rays) rotational-electronic problem. The interaction with the laser is assumed to be nonresonant; it is described by an electric dipole polarizability tensor. X-ray absorption is approximated as a one-photon process. It is shown that the equations can be separated such that the interaction with the laser can be treated independently of the x rays. The laser-only density matrix is propagated numerically. After each time step, the x-ray absorption is calculated. We apply our theory to study adiabatic alignment of bromine molecules (Br2). The required dynamic polarizabilities are determined using the ab initio linear response methods coupled-cluster singles (CCS), second-order approximate coupled-cluster singles and doubles (CC2), and coupled-cluster singles and doubles (CCSD). For the description of x-ray absorption on the sigma_g 1s --> sigma_u 4p resonance, a parameter-free two-level model is used for the electronic structure of the molecules. Our theory opens up novel perspectives for the quantum control of x-ray radiation.Comment: 14 pages, 4 figures, 1 table, RevTeX4, revise

    Discommensurational and Inhomogeneous States Induced by a Strong Magnetic Field in Low-Dimensional Antiferromagnets

    Full text link
    Anisotropic antiferromagnetic systems of dimensionality greater than one in an external field are shown to exhibit a complicated array of ground states depending on the spin structure of the surface. The simplest structure that exhibits these effects is the spin ladder with the surface being the ladder end, which can be either compensated or non-compensated spins. The structure with the compensated end has a surface spin flop phase, the non-compensated end has a discommensurational phase, and the transition to these phases can be either first or second order with a tricritical point.Comment: 10 page

    Metallic behavior and related phenomena in two dimensions

    Full text link
    For about twenty years, it has been the prevailing view that there can be no metallic state or metal-insulator transition in two dimensions in zero magnetic field. In the last several years, however, unusual behavior suggestive of such a transition has been reported in a variety of dilute two-dimensional electron and hole systems. The physics behind these observations is presently not understood. We review and discuss the main experimental findings and suggested theoretical models.Comment: To be published in Rev. Mod. Phy

    Genetic Regulation of Fluxes: Iron Homeostasis of Escherichia coli

    Get PDF
    Iron is an essential trace-element for most organisms. However, because high concentration of free intracellular iron is cytotoxic, cells have developed complex regulatory networks that keep free intracellular iron concentration at optimal range, allowing the incorporation of the metal into iron-using enzymes and minimizing damage to the cell. We built a mathematical model of the network that controls iron uptake and usage in the bacterium Escherichia coli to explore the dynamics of iron flow. We simulate the effect of sudden decrease or increase in the extracellular iron level on intracellular iron distribution. Based on the results of simulations we discuss the possible roles of the small RNA RyhB and the Fe-S cluster assembly systems in the optimal redistribution of iron flows. We suggest that Fe-S cluster assembly is crucial to prevent the accumulation of toxic levels of free intracellular iron when the environment suddenly becomes iron rich.Comment: 8 pages, 4 figure
    • …
    corecore