52 research outputs found

    Current Insights in Microbiome Shifts in Sjogren's Syndrome and Possible Therapeutic Interventions.

    Get PDF
    Sjogren's syndrome (SS) is an autoimmune disease, among the most common ones, that targets mainly the exocrine glands as well as extra-glandular epithelial tissues. Their lymphocytic infiltration leads to manifestations from other organs (e.g., kidneys, lungs, liver, or thyroid), apart from sicca symptoms (xerostomia and keratoconjunctivitis). SS is more prevalent in women than in men (9:1). Moreover, p.SS patients are in increased risk to develop lymphoma. Certain autoantibodies (e.g., antibodies against ribonucleoprotein autoantigens Ro-SSA and La-SSB) are ultimate hallmarks for the disease. It was not known until recently that culture-independent techniques like next-generation sequencing (NGS) facilitate the study of the microbe communities in humans and scientists achieved to define the outlines of the microbiome contribution in health and disease. Researchers have started to investigate the alterations in diversity of the oral, ocular, or intestinal microbiota in SS. Recent studies indicate that dysbiosis may play a significant role in SS pathogenesis. At the same time, the cause or effect is not clear yet because the dysfunction of salivary glands induces alterations in oral and intestinal microbiome which is linked to worsen of symptoms and disease severity. If the human microbiome proves to play a key role in pathogenesis and manifestation of SS, the next step could be new and promising therapeutic approaches such as probiotics or prebiotics. This mini review focuses on the alterations of microbiome of SS patients, their connection with immune tolerance and new therapeutic strategies involving diet manipulation toward future personalized medicine

    Influence of Milk-Feeding Type and Genetic Risk of Developing Coeliac Disease on Intestinal Microbiota of Infants: The PROFICEL Study

    Get PDF
    Interactions between environmental factors and predisposing genes could be involved in the development of coeliac disease (CD). This study has assessed whether milk-feeding type and HLA-genotype influence the intestinal microbiota composition of infants with a family history of CD. The study included 164 healthy newborns, with at least one first-degree relative with CD, classified according to their HLA-DQ genotype by PCR-SSP DQB1 and DQA1 typing. Faecal microbiota was analysed by quantitative PCR at 7 days, and at 1 and 4 months of age. Significant interactions between milk-feeding type and HLA-DQ genotype on bacterial numbers were not detected by applying a linear mixed-model analysis for repeated measures. In the whole population, breast-feeding promoted colonization of C. leptum group, B. longum and B. breve, while formula-feeding promoted that of Bacteroides fragilis group, C. coccoides-E. rectale group, E. coli and B. lactis. Moreover, increased numbers of B. fragilis group and Staphylococcus spp., and reduced numbers of Bifidobacterium spp. and B. longum were detected in infants with increased genetic risk of developing CD. Analyses within subgroups of either breast-fed or formula-fed infants indicated that in both cases increased risk of CD was associated with lower numbers of B. longum and/or Bifidobacterium spp. In addition, in breast-fed infants the increased genetic risk of developing CD was associated with increased C. leptum group numbers, while in formula-fed infants it was associated with increased Staphylococcus and B. fragilis group numbers. Overall, milk-feeding type in conjunction with HLA-DQ genotype play a role in establishing infants' gut microbiota; moreover, breast-feeding reduced the genotype-related differences in microbiota composition, which could partly explain the protective role attributed to breast milk in this disorder

    Milk: a postnatal imprinting system stabilizing FoxP3 expression and regulatory T cell differentiation

    Full text link

    Potential Elimination of Human Gut Resistome by Exploiting the Benefits of Functional Foods

    No full text
    Recent advances in technology over the last decades have strived to elucidate the diverse and abundant ecosystem of the human microbiome. The intestinal microbiota represents a densely inhabited environment that offers a plethora of beneficial effects to the host’s wellbeing. On the other hand, it can serve as a potential reservoir of Multi-Drug Resistant (MDR) bacteria and their antibiotic-resistant genes (ARgenes), which comprise the “gut resistome.” ARgenes, like antibiotics, have been omnipresent in the environment for billions of years. In the context of the gut microbiome, these genes may conflate into exogenous MDR or emerge in commensals due to mutations or gene transfers. It is currently generally accepted that Antimicrobial Resistance (AMR) poses a serious threat to public health worldwide. It is of paramount importance that researchers focus on, amongst other parameters, elaborating strategies to manage the gut resistome, particularly focusing on the diminution of AMR. Potential interventions in the gut microbiome field by Fecal Microbiota Transplant (FMT) or functional foods are newly emerged candidates for the uprooting of MDR strains and restoring dysbiosis and resilience. Probiotic nutrition is thought to diminish gut colonization from pathobionts. Yet only a few studies have explored the effects of antibiotics use on the reservoir of AR genes and the demanding time for return to normal by gut microbiota-targeted strategies. Regular administration of probiotic bacteria has recently been linked to restoration of the gut ecosystem and decrease of the gut resistome and AR genes carriers. This review summarizes the latest information about the intestinal resistome and the intriguing methods of fighting against AMR through probiotic-based methods and gut microbial shifts that have been proposed. This study contains some key messages: (1) AMR currently poses a lethal threat to global health, and it is pivotal for the scientific community to do its utmost in fighting against it; (2) human gut microbiome research, within the last decade especially, seems to be preoccupied with the interface of numerous diseases and identifying a potential target for a variety of interventions; (3) the gut resistome, comprised of AR genesis, presents very early on in life and is prone to shifts due to the use of antibiotics or dietary supplements; and (4) future strategies involving functional foods seem promising for the battle against AMR through intestinal resistome diminution. © Copyright © 2020 Tsigalou, Konstantinidis, Stavropoulou, Bezirtzoglou and Tsakris
    corecore