1,643 research outputs found

    Wide-field mid-infrared and millimetre imaging of the high-redshift radio galaxy, 4C41.17

    Get PDF
    We present deep 350- and 1200-micron imaging of the region around 4C41.17 -- one of the most distant (z = 3.792) and luminous known radio galaxies -- obtained with the Submillimeter High Angular Resolution Camera (SHARC-II) and the Max Planck Millimeter Bolometer Array (MAMBO). The radio galaxy is robustly detected at 350- and 1200-micron, as are two nearby 850-micron-selected galaxies; a third 850-micron source is detected at 350-micron and coincides with a ~ 2-sigma feature in the 1200-micron map. Further away from the radio galaxy an additional nine sources are detected at 1200-micron, bringing the total number of detected (sub)millimeter selected galaxies (SMGs) in this field to 14. Using radio images from the Very Large Array (VLA) and Spitzer mid-infrared (mid-IR) data, we find statistically robust radio and/or 24-micron counterparts to eight of the 14 SMGs in the field around 4C41.17. Follow-up spectroscopy with Keck/LRIS has yielded redshifts for three of the eight robustly identified SMGs, placing them in the redshift range 0.5 < z < 2.7, i.e. well below that of 4C41.17. We infer photometric redshifts for a further four sources using their 1.6-micron (rest-frame) stellar feature as probed by the IRAC bands; only one of them is likely to be at the same redshift as 4C41.17. Thus at least four, and as many as seven, of the SMGs within the 4C41.17 field are physically unrelated to the radio galaxy. With the redshift information at hand we are able to constrain the observed over-densities of SMGs within radial bins stretching to R=50 and 100" (~ 0.4 and ~ 0.8Mpc at z ~ 3.8) from the radio galaxy to ~ 5x and ~ 2x that of the field, dropping off to the background value at R=150". [Abridged]Comment: 20 pages, 9 figures, accepted for publication in MNRA

    A Kiloparsec-Scale Hyper-Starburst in a Quasar Host Less than 1 Gigayear after the Big Bang

    Full text link
    The host galaxy of the quasar SDSS J114816.64+525150.3 (at redshift z=6.42, when the Universe was <1 billion years old) has an infrared luminosity of 2.2x10^13 L_sun, presumably significantly powered by a massive burst of star formation. In local examples of extremely luminous galaxies such as Arp220, the burst of star formation is concentrated in the relatively small central region of <100pc radius. It is unknown on which scales stars are forming in active galaxies in the early Universe, which are likely undergoing their initial burst of star formation. We do know that at some early point structures comparable to the spheroidal bulge of the Milky Way must have formed. Here we report a spatially resolved image of [CII] emission of the host galaxy of J114816.64+525150.3 that demonstrates that its star forming gas is distributed over a radius of ~750pc around the centre. The surface density of the star formation rate averaged over this region is ~1000 M_sun/yr/kpc^2. This surface density is comparable to the peak in Arp220, though ~2 orders of magnitudes larger in area. This vigorous star forming event will likely give rise to a massive spheroidal component in this system.Comment: Nature, in press, Feb 5 issue, p. 699-70

    Spin-squeezing and Dicke state preparation by heterodyne measurement

    Full text link
    We investigate the quantum non-demolition (QND) measurement of an atomic population based on a heterodyne detection and show that the induced back-action allows to prepare both spin-squeezed and Dicke states. We use a wavevector formalism to describe the stochastic process of the measurement and the associated atomic evolution. Analytical formulas of the atomic distribution momenta are derived in the weak coupling regime both for short and long time behavior, and they are in good agreement with those obtained by a Monte-Carlo simulation. The experimental implementation of the proposed heterodyne detection scheme is discussed. The role played in the squeezing process by the spontaneous emission is considered

    A Molecular Einstein Ring: Imaging a Starburst Disk Surrounding a Quasi-Stellar Object

    Get PDF
    Images of the CO 2-1 line emission, and the radio continuum emission, from the redshift 4.12 gravitationally lensed quasi-stellar object (QSO) PSS J2322+1944 reveal an Einstein ring with a diameter of 1.5". These observations are modeled as a star forming disk surrounding the QSO nucleus with a radius of 2 kpc. The implied massive star formation rate is 900 M_sun/year. At this rate a substantial fraction of the stars in a large elliptical galaxy could form on a dynamical time scale of 10^8 years. The observation of active star formation in the host galaxy of a high-redshift QSO supports the hypothesis of coeval formation of supermassive black holes and stars in spheroidal galaxies.Comment: 12 pages. to appear in Science, April 200

    Radio observations of the cool gas, dust, and star formation in the first galaxies

    Full text link
    We summarize cm through submm observations of the host galaxies of z ~ 6 quasars. These observations reveal the cool molecular gas (the fuel for star formation), the warm dust (heated by star formation), the fine structure line emission (tracing the CNM and PDRs), and the synchrotron emission. Our results imply active star formation in ~ 30% of the host galaxies, with star formation rates ~ 10^3 M_sun/year, and molecular gas masses ~ 10^10 M_sun. Imaging of the [CII] emission from the most distant quasar reveals a 'maximal starburst disk' on a scale ~ 1.5 kpc. Gas dynamical studies suggest a departure of these galaxies from the low-z M_{BH} -- M_{bulge} relation, with the black holes being, on average, 15 times more massive than expected. Overall, we are witnessing the co-eval formation of massive galaxies and supermassive black holes within 1 Gyr of the Big Bang.Comment: First Stars and Galaxies: Challenges in the Next Decade, AIP, 2010; Austin TX (eds Whelan, Bromm, Yoshida); 7 page

    Phase transition and hyperscaling violation for scalar Black Branes

    Full text link
    We investigate the thermodynamical behavior and the scaling symmetries of the scalar dressed black brane (BB) solutions of a recently proposed, exactly integrable Einstein-scalar gravity model [1], which also arises as compactification of (p-1)-branes with a smeared charge. The extremal, zero temperature, solution is a scalar soliton interpolating between a conformal invariant AdS vacuum in the near-horizon region and a scale covariant metric (generating hyperscaling violation on the boundary field theory) asymptotically. We show explicitly that for the boundary field theory this implies the emergence of an UV length scale (related to the size of the brane), which decouples in the IR, where conformal invariance is restored. We also show that at high temperatures the system undergoes a phase transition. Whereas at small temperature the Schwarzschild-AdS BB is stable, above a critical temperature the scale covariant, scalar-dressed BB solution, becomes energetically preferred. We calculate the critical exponent z and the hyperscaling violation parameter of the scalar-dressed phase. In particular we show that the hyperscaling violation parameter is always negative. We also show that the above features are not a peculiarity of the exact integrable model of Ref.[1], but are a quite generic feature of Einstein-scalar and Einstein-Maxwell-scalar gravity models for which the squared-mass of the scalar field is positive and the potential vanishes exponentially as the scalar field goes to minus infinity.Comment: 20 pages, 4 figures. In the revised version it has been pointed out that the Einstein-scalar gravity model considered in the paper also arises as compactification of black p-branes with smeared charge

    Quasars in the MAMBO blank field survey

    Full text link
    Our MAMBO 1.2 mm blank field imaging survey of ~0.75 sqd has uncovered four unusually bright sources, with flux densities between 10 and 90 mJy, all located in the Abell 2125 field. The three brightest are flat spectrum radio sources with bright optical and X-ray counterparts. Their mm and radio flux densities are variable on timescales of months. Their X-ray luminosities classify them as quasars. The faintest of the four mm bright sources appears to be a bright, radio-quiet starburst at z~3, similar to the sources seen at lower flux densities in the MAMBO and SCUBA surveys. It may also host a mildly obscured AGN of quasar-like X-ray luminosity. The three non-thermal mm sources imply an areal density of flat spectrum radio sources higher by at least 7 compared with that expected from an extrapolation of the lower frequency radio number counts.Comment: 8 pages, 7 figures. Accepted for publication by A&
    corecore