49 research outputs found

    Evolution of the Aging Brain Transcriptome and Synaptic Regulation

    Get PDF
    Alzheimer's disease and other neurodegenerative disorders of aging are characterized by clinical and pathological features that are relatively specific to humans. To obtain greater insight into how brain aging has evolved, we compared age-related gene expression changes in the cortex of humans, rhesus macaques, and mice on a genome-wide scale. A small subset of gene expression changes are conserved in all three species, including robust age-dependent upregulation of the neuroprotective gene apolipoprotein D (APOD) and downregulation of the synaptic cAMP signaling gene calcium/calmodulin-dependent protein kinase IV (CAMK4). However, analysis of gene ontology and cell type localization shows that humans and rhesus macaques have diverged from mice due to a dramatic increase in age-dependent repression of neuronal genes. Many of these age-regulated neuronal genes are associated with synaptic function. Notably, genes associated with GABA-ergic inhibitory function are robustly age-downregulated in humans but not in mice at the level of both mRNA and protein. Gene downregulation was not associated with overall neuronal or synaptic loss. Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes

    Apolipoprotein D synthesis progressively increases in frontal cortex during human lifespan

    Get PDF
    Apolipoprotein D (apo D) is a lipocalin present in the nervous system that may be related to processes of reinnervation, regeneration and neuronal cell protection. In the other way, apo D expression has been correlated, in some brain regions, with normal aging and neurodegenerative diseases. To elucidate the regional and cellular expression of apo D in normal human brain during aging, we performed a detailed and extensive study in samples of post-mortem human cerebral cortices. To achieve this study, slot blot techniques, for protein and mRNA, as well as immunohistochemistry and hybridohistochemistry methods were used. A positive correlation for apo D expression with aging was found; furthermore, mRNA levels, as well as the protein ones, were higher in the white than in the grey matter. Immunohistochemistry and non-isotopic HIS showed that apo D is synthesized in both neurons and glial cells. Apo D expression is notorious in oligodendrocytes but with aging the number of neurons that synthesize apo D is increased. Our results indicate that apo D could play a fundamental role in central nervous system aging and in the reduction of products derivated from lipid peroxidation. The increment in the expression of apo D with aging can be included in a global mechanism of cellular protection to prevent the deleterious effects caused by aging

    A subpopulation of smooth muscle cells, derived from melanocyte-competent precursors, prevents patent ductus arteriosus

    Get PDF
    BACKGROUND: Patent ductus arteriosus is a life-threatening condition frequent in premature newborns but also present in some term infants. Current mouse models of this malformation generally lead to perinatal death, not reproducing the full phenotypic spectrum in humans, in whom genetic inheritance appears complex. The ductus arteriosus (DA), a temporary fetal vessel that bypasses the lungs by shunting the aortic arch to the pulmonary artery, is constituted by smooth muscle cells of distinct origins (SMC1 and SMC2) and many fewer melanocytes. To understand novel mechanisms preventing DA closure at birth, we evaluated the importance of cell fate specification in SMC that form the DA during embryonic development. Upon specific Tyr::Cre-driven activation of Wnt/beta-catenin signaling at the time of cell fate specification, melanocytes replaced the SMC2 population of the DA, suggesting that SMC2 and melanocytes have a common precursor. The number of SMC1 in the DA remained similar to that in controls, but insufficient to allow full DA closure at birth. Thus, there was no cellular compensation by SMC1 for the loss of SMC2. Mice in which only melanocytes were genetically ablated after specification from their potential common precursor with SMC2, demonstrated that differentiated melanocytes themselves do not affect DA closure. Loss of the SMC2 population, independent of the presence of melanocytes, is therefore a cause of patent ductus arteriosus and premature death in the first months of life. Our results indicate that patent ductus arteriosus can result from the insufficient differentiation, proliferation, or contractility of a specific smooth muscle subpopulation that shares a common neural crest precursor with cardiovascular melanocytes

    Heat Shock Proteins and Amateur Chaperones in Amyloid-Beta Accumulation and Clearance in Alzheimer’s Disease

    Get PDF
    The pathologic lesions of Alzheimer’s disease (AD) are characterized by accumulation of protein aggregates consisting of intracellular or extracellular misfolded proteins. The amyloid-β (Aβ) protein accumulates extracellularly in senile plaques and cerebral amyloid angiopathy, whereas the hyperphosphorylated tau protein accumulates intracellularly as neurofibrillary tangles. “Professional chaperones”, such as the heat shock protein family, have a function in the prevention of protein misfolding and subsequent aggregation. “Amateur” chaperones, such as apolipoproteins and heparan sulfate proteoglycans, bind amyloidogenic proteins and may affect their aggregation process. Professional and amateur chaperones not only colocalize with the pathological lesions of AD, but may also be involved in conformational changes of Aβ, and in the clearance of Aβ from the brain via phagocytosis or active transport across the blood–brain barrier. Thus, both professional and amateur chaperones may be involved in the aggregation, accumulation, persistence, and clearance of Aβ and tau and in other Aβ-associated reactions such as inflammation associated with AD lesions, and may, therefore, serve as potential targets for therapeutic intervention

    Human plasma protein N-glycosylation

    Full text link

    Differential expression of LMO4 protein in Alzheimer's disease.

    No full text
    The molecular bases of late-onset and sporadic Alzheimer's disease (AD) still have to be unraveled. Among putative candidates for molecular variations in AD, we propose LMO4 protein, a transcription regulator, involved in multiple protein complexes. We investigated changes in LMO4 immunoreactivity in vulnerable brain regions of AD cases and controls of comparable age. Immunocytochemical analysis revealed a high level of LMO4 expression in the entorhinal cortex (EC) and in the CA1 hippocampal region of the control brains and a consistent decrease in the AD brains, correlated with the amount of neurofibrillary tangles (NFT) degenerating neurones and the severity of senile plaques deposition. The decrease in LMO4 immunoreactivity resulted both from weaker immunoreactive signals and from a loss of immunoreactive neurones. LMO4 immunocytochemical staining appeared not to be colocalized with NFT in a majority of neurones. Its expression was weak in the dentate gyrus and stronger in CA3-4, two regions with no or low numbers of NFT, but there was no decrease in AD compared to control cases. In the frontal cortex, the ventro-infero-median region (area 12) showed a greater LMO4 expression than the polar one (area 9), but no decrease in AD was observed. As LMO4 has been proposed to inhibit cellular differentiation, it can be hypothesized that a reduced expression is associated in EC and CA1 with attempts of diseased neurones to differentiate (e.g. compensatory neuritogenesis). Taken together, these data indicate that LMO4 protein is involved in the complexity of the disease phenotype, at least as a secondary factor

    Differential messenger RNA distribution of lactate dehydrogenase LDH-1 and LDH-5 isoforms in the rat brain

    No full text
    The role of lactate in brain energy metabolism has recently received renewed attention. Although blood-borne monocarboxylates such as lactate poorly cross the blood-brain barrier in the adult brain, lactate produced within the brain parenchyma may be a suitable substrate for brain cells. Lactate dehydrogenase is crucial for both the production and utilization of lactate. In this article, we report the regional distribution of the messenger RNAs for lactate dehydrogenase isoforms 1 and 5 in the adult rat brain using in situ hybridization histochemistry with specific [alpha-(35)S]dATP 3' end-labeled oligoprobes. The autoradiographs revealed that the lactate dehydrogenase-1 messenger RNA is highly expressed in a variety of brain structures, including the main olfactory bulb, the piriform cortex, several thalamic and hypothalamic nuclei, the pontine nuclei, the ventral cochlear nucleus, the trigeminal nerve and the solitary tractus nucleus. In addition, the granular and Purkinje cell layers of the cerebellum showed a strong labeling. The neocortex (e.g., cingular, retrosplenial and frontoparietal cortices) often exhibits a marked laminar pattern of distribution of lactate dehydrogenase-1 messenger RNA (layers II/III, IV and VI being most strongly labeled). In contrast, expression of the lactate dehydrogenase-5 messenger RNA generally seemed more diffusely distributed across the different brain regions. Expression was particularly strong in the hippocampal formation (especially in Ammon's horn and dentate gyrus) and in the cerebral cortex, where no laminar pattern of distribution was observed. Overall, these data are consistent with the emerging idea that lactate is an important energy substrate produced and consumed by brain cells

    Differential messenger RNA distribution of lactate dehydrogenase LDH-1 and LDH-5 isoforms in the rat brain

    No full text
    The role of lactate in brain energy metabolism has recently received renewed attention. Although blood-borne monocarboxylates such as lactate poorly cross the blood-brain barrier in the adult brain, lactate produced within the brain parenchyma may be a suitable substrate for brain cells. Lactate dehydrogenase is crucial for both the production and utilization of lactate. In this article, we report the regional distribution of the messenger RNAs for lactate dehydrogenase isoforms 1 and 5 in the adult rat brain using in situ hybridization histochemistry with specific [alpha-(35)S]dATP 3' end-labeled oligoprobes. The autoradiographs revealed that the lactate dehydrogenase-1 messenger RNA is highly expressed in a variety of brain structures, including the main olfactory bulb, the piriform cortex, several thalamic and hypothalamic nuclei, the pontine nuclei, the ventral cochlear nucleus, the trigeminal nerve and the solitary tractus nucleus. In addition, the granular and Purkinje cell layers of the cerebellum showed a strong labeling. The neocortex (e.g., cingular, retrosplenial and frontoparietal cortices) often exhibits a marked laminar pattern of distribution of lactate dehydrogenase-1 messenger RNA (layers II/III, IV and VI being most strongly labeled). In contrast, expression of the lactate dehydrogenase-5 messenger RNA generally seemed more diffusely distributed across the different brain regions. Expression was particularly strong in the hippocampal formation (especially in Ammon's horn and dentate gyrus) and in the cerebral cortex, where no laminar pattern of distribution was observed. Overall, these data are consistent with the emerging idea that lactate is an important energy substrate produced and consumed by brain cells

    Nutritional value of defatted larvae meal and whole larvae from black soldier fly

    No full text
    Session 66, Théâtre 10International audienceBlack soldier fly (BSF) larvae is a novel protein source to feed poultry. However, only nutritional values for BSF mealsare available in the literature, whereas the use of whole larvae could be a promising strategy, for instance when usedas an environmental enrichment material. Thus, this study aimed to investigate the nutritional value of three differentBSF products: defatted larvae meal (LM) and whole larvae, either dried (DL) or fresh (FL). On a dry matter (DM)basis, crude protein (CP) and crude fat (CF) contents were respectively of 57 and 10% for LM vs 39 and 34% forwhole larvae. A total of 48 Ross 308 male boilers were randomly assigned to individual cages for a digestibility trial.Four treatments were used: a control diet (C), a LM diet containing 75% C + 25% LM and two larvae diets containing,on a DM basis, 75% C + 25% of FL or DL larvae. Whole larvae were distributed on top of pellets in the same feeder.For the three products (LM, DL, and FL), the metabolizable energy (AMEn) and the apparent total tract digestibility(ATTD) of DM, CF, CP, and gross energy (GE) were measured, as well as the standardised ileal digestibility (SID) ofamino acids (AA). The ATTD of DM, GE, and CP were significantly higher (P<0.001) for DL and FL compared to LM(DM: 83 vs 60%; GE: 85 vs 63%; CP: 68 vs 53%). TTAD of CF was significantly higher for DL (98.2%) comparedto LM (94.6%; P<0.01) and FL (95.7%; P<0.05). The AMEn was significantly lower for LM compared to DL/FL(2,730 vs 4,950 kcal/kg DM; P<0.001). The SID of all AA were significantly lower for LM (52-86%) compared toDL and FL (77-98%) with respective values of 84 vs 93% for lysine and 85 vs 95% for methionine+cysteine. Thesedifferences could be explained by the higher chitin content in LM, due to defatting process. At high concentration,chitin is indeed known to impair nutrients digestibility. These results provide the first data on the nutritional value ofwhole BSF larvae and confirm that BSF larvae are a highly digestible source of nutrients for poultry
    corecore