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Abstract

Background: Patent ductus arteriosus is a life-threatening condition frequent in premature newborns but also present in
some term infants. Current mouse models of this malformation generally lead to perinatal death, not reproducing the full
phenotypic spectrum in humans, in whom genetic inheritance appears complex. The ductus arteriosus (DA), a temporary
fetal vessel that bypasses the lungs by shunting the aortic arch to the pulmonary artery, is constituted by smooth muscle
cells of distinct origins (SMC1 and SMC2) and many fewer melanocytes. To understand novel mechanisms preventing DA
closure at birth, we evaluated the importance of cell fate specification in SMC that form the DA during embryonic
development. Upon specific Tyr::Cre-driven activation of Wnt/b-catenin signaling at the time of cell fate specification,
melanocytes replaced the SMC2 population of the DA, suggesting that SMC2 and melanocytes have a common precursor.
The number of SMC1 in the DA remained similar to that in controls, but insufficient to allow full DA closure at birth. Thus,
there was no cellular compensation by SMC1 for the loss of SMC2. Mice in which only melanocytes were genetically ablated
after specification from their potential common precursor with SMC2, demonstrated that differentiated melanocytes
themselves do not affect DA closure. Loss of the SMC2 population, independent of the presence of melanocytes, is
therefore a cause of patent ductus arteriosus and premature death in the first months of life. Our results indicate that patent
ductus arteriosus can result from the insufficient differentiation, proliferation, or contractility of a specific smooth muscle
subpopulation that shares a common neural crest precursor with cardiovascular melanocytes.
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Introduction

The ductus arteriosus (DA) is a normal fetal artery linking the

aortic arch to the left pulmonary artery in mammals (bilateral in

birds), and allowing the blood to bypass the lungs in utero (reviewed

in [1]). The blood circulation of amniotes then changes

dramatically at birth. Once the lungs ventilate, blood flow reverses

as pulmonary resistance decreases. The higher oxygen levels

induce onset of DA closure through functional constriction of its

muscular tunica media. This process initiates proliferation, migra-

tion, extracellular matrix production, and, through resultant

hypoxia, the apoptosis of the cells forming the DA.

After birth, full closure of the DA can fail (patent ductus

arteriosus or PDA), potentially leading to cardiac failure. In most

cases, maintenance of an increased volume load to the left heart

causes dilation of the left cardiac cavities associated with a

progressive pulmonary vascular remodeling due to excess volume

in the pulmonary artery bed. This compromises postnatal health

by leading to respiratory complications such as pulmonary

hypertension and edema. PDA is a frequent problem affecting

premature children, with a prevalence greater than 40% in infants

with a birth weight of 1.5 kg or less [2].

The final steps of DA closure include a drop in the levels of

vasoactive hormones such as prostaglandin E2 (PGE2), which

plays a critical role in maintaining the necessary open status of the

DA during fetal development, followed by remodeling of the tunica

media under the influences of hypoxia. In PDA due to prematurity,
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closure can usually be achieved by treatment with cyclooxygenase

inhibitors such as indomethacin or ibuprofen, which block

prostaglandin synthesis [3]. Such drug-induced closure is more

difficult to obtain in cases of PDA in at-term newborns: the rate of

success in these cases is only about 30% [3]. A properly closed DA

ultimately undergoes physiological fibrosis to evolve into the

ligamentum arteriosum (LigA).

In humans, mutations in TFAP2B (encoding the AP-2b
transcription factor) and MYH11 have been identified in cases of

isolated, inherited PDA [4,5], but most cases are believed to be

multifactorial in origin and indeed often present as part of a

syndromic spectrum, suggesting that the condition is associated

with a complex genetic inheritance. A number of PDA mouse

models have been produced, in which lack of DA closure generally

leads to death within three days of birth (P3). Single gene

mutations in Hpgd, Ptger4, Ptgs2, Foxc1 or Myh11 result in the

absence of, or delay in, DA closure [6,7,8,9,10,11]. In some cases,

affected mice may be rescued by indomethacin injection [7].

Double mutant mice, in which Cox-1 and Cox-2 are disrupted, also

exhibit PDA [12]. A deletion encompassing 24 genes between the

Dgcr2 and Hira loci on chromosome 16 leads to death with the

presence of an open DA, as does a nested deletion comprising

Tbx1 and three other genes [13]. Deletion of the equivalent

chromosomal region in humans is associated with the complex

DiGeorge syndrome, of which PDA is a common feature [14,15].

The somatic ablation of myocardin (Myocd), using Wnt1::Cre or

Pax3::Cre mice, leads to the failure of DA closure [16]. These two

promoters are active in early postmigratory neural crest cell

derivatives, comprising the smooth muscle cells (SMC) of the DA.

The heart and its associated great arteries are composed for the

most part of cells derived from the mesoderm, but with a critical

contribution from neural crest cells [17]. Vagal neural crest cells

(VNCC) can differentiate into numerous derivatives including

neurons and glial cells of the enteric, autonomic and somatic

nervous systems, SMC, mesenchymal cells and melanocytes (Mc).

The tunica media of the DA, which like other pharyngeal arch-

remodeled arteries consists mainly of SMC, is derived from these

VNCC [18,19,20] [21,22,23].

Recently, Mc have been observed in the heart, in the valves and

septa and in the DA/LigA [22,24,25,26]. Mouse lines producing

the Cre recombinase under the control of the tyrosinase promoter

(Tyr::Cre) [27] have been used to show that the DA/LigA contains

cells derived from VNCC: a very small number of Mc (pigmented

and recombined cells), SMC2 (non-pigmented and recombined

cells, estimated to constitute 10–20% of the DA/LigA cell

population) and SMC1 (non-pigmented and non-recombined

cells, estimated to make up to 80–90% of the DA/LigA cell

population) [22]. The tyrosinase promoter [28] is transiently active

around day 9 of gestation (E9) in Mc precursors, called

melanoblasts (Mb) and SMC2 precursors of the DA [22].

Activation of Wnt/b-catenin signaling favors the Mc fate in

multipotent progenitors [29,30]. Here, we generated mice that

produce a constitutively active form of b-catenin (ctnnb1Dex3) in

cells having expressed tyrosinase, to both explore the SMC2/Mc

bipotency of a subset of VNCC and to evaluate the anatomical

consequences of cell fate alterations in the DA.

Results

Melanoblasts replace a subpopulation of smooth muscle
cells in ctnnb1Dex3 mice

Recombinant ctnnb1Dex3 mice were generated by producing an

activated form of b-catenin in cells of the Tyr::Cre lineage. LoxP

sequences had previously been inserted into introns 2 and 3 to

flank the third exon of the gene encoding b-catenin (ctnnb1), for

which the allele is also known as ‘‘f3’’ [31]. Exon 3 encodes serine

and threonine residues involved in phosphorylation and degrada-

tion of the protein. The resulting modified b-catenin is reportedly

more stable [32]. We verified in vitro that the deletion of exon 3

substantially increases protein activity (by five-fold) in B16

melanoma cell lines (Figure 1), as has been demonstrated in vivo

for recombined cells of the intestinal epithelium [31].

Hemizygous Tyr::Cre/u mice were then crossed with heterozy-

gous or homozygous floxed ( = non-recombined) ctnnb1Dex3/+ or

ctnnb1Dex3/ctnnb1Dex3 mice to produce Tyr::Cre/u; +/+ (WT) and

Tyr::Cre/u; ctnnb1Dex3/+ (ctnnb1Dex3) siblings (Table S1). These

WT and ctnnb1Dex3 mice were initially backcrossed on a

Dct::LacZ background, to visualize Mb in the DA. Dct is a member

of the tyrosinase gene family and encodes the enzyme dopachrome

tautomerase (also known as tyrosinase-related protein 2 or Trp2)

involved in eumelanin synthesis. In Dct::LacZ/u reporter mice, the

transgene LacZ, under the control of the Dct promoter, is expressed

in Mb, retinal pigmented epithelium cells, and in the forebrain,

but not in vascular smooth muscle cells. Tyr::Cre/u; +/+; Dct::LacZ/

u ( = WT-Dct) and Tyr::Cre/u; ctnnb1Dex3/+; Dct::LacZ/u ( =

ctnnb1Dex3-Dct) hearts were isolated, fixed and stained with X-

gal on embryonic day (E)18.5. Whole-mount observation revealed

that there were visibly more Mb in the mutant than the WT DA

(Figure 2A–D). Transverse sections confirmed that Mb were

scarce in the WT-Dct DA, consistent with a previous study [22],

but were numerous (60623 Mb per section) in ctnnb1Dex3-Dct

DA (Figure 3A, B).

Antibodies directed against a-smooth muscle actin (SMA) and

b-galactosidase were used for immunofluorescence analysis of

E18.5 ctnnb1Dex3-Dct and WT-Dct DA (Figure 3C–F).

Expression of SMA and b-galactosidase was mutually exclusive:

all b-galactosidase-positive cells were SMA-negative, and SMA-

positive cells were b-galactosidase negative (Figure 4). This

suggested that at E18.5, the cells forming the DA were fully

committed either to SMC (SMA-expressing) or to Mb (b-

galactosidase-expressing due to the Dct::LacZ transgene).

Figure 1. b-catenin (ctnnb1) and ctnnb1Dex3 strongly activates
the TOP promoter. The empty, ctnnb1 and ctnnb1Dex3 expression
vectors were co-transfected with TOP (black) and FOP (white) vectors in
B16 melanoma cell lines [37]. Similar results were obtained with normal
murine melanocytes (melan-a cells). The experiments were performed
3 times. *: p-value ,0.05, **: p-value ,0.01.
doi:10.1371/journal.pone.0053183.g001

Reduced Number of SMC and Closure of the DA
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To trace the progeny of recombined cells, we used the Tyr::Cre

system for recombination and Rosa26R reporter mice for

continuous b-galactosidase expression. Tyr::Cre/u; ctnnb1Dex3/+
(ctnnb1Dex3) or Tyr::Cre/u; +/+ (WT) mice were crossed with

Rosa26R/+ mice to generate ctnnb1Dex3-Rosa (Tyr::Cre/u;
ctnnb1Dex3/+; Rosa26R/+) and WT-Rosa (Tyr::Cre/u; +/+;

Rosa26R/+) offspring. Immunostaining of the hearts and DA at

E18.5 revealed the existence of three types of cells: (i) SMA-

positive and b-galactosidase-negative cells ( = SMC1), (ii) SMA-

positive and b-galactosidase-positive cells ( = SMC2) and (iii)

SMA-negative and b-galactosidase-positive cells ( = Mb). The

SMA-positive cells correspond to SMC, and the b-galactosidase-

positive cells to recombined cells that had expressed the Tyr::Cre

transgene. The numbers of SMC ( = SMC1+SMC2) were

determined in transverse sections of WT-Rosa and ctnnb1Dex3-

Rosa DA (Figure 5). The total counts of SMC were higher in

WT-Rosa (382649) than in ctnnb1Dex3-Rosa (301653) DA

sections. However, the numbers of SMC1 were similar (300665)

in WT-Rosa and ctnnb1Dex3-Rosa, indicating that the number of

SMC1 is not altered in ctnnb1Dex3-Rosa animals, but that SMC2

are lacking.

The numbers of SMC2+Mb per section were very similar in the

DA of WT-Rosa and ctnnb1Dex3-Rosa (around 70) (Figure 5).

However, the numbers of SMC2 alone were 62629 versus 563 per

section in WT-Rosa and ctnnb1Dex3-Rosa, respectively, while the

numbers of Mb were 565 versus 5,80063,400 per 100 sections in

WT-Rosa and ctnnb1Dex3-Rosa, respectively. These various

observations show that on a ctnnb1Dex3 background, Mb replaced

most of the SMC2 in the DA. In other words, a subset of VNCC is

bipotent for SMC2 and Mc, and responds to signaling through b-

catenin.

ctnnb1Dex3 mice have a greatly dilated left atrium, which
develops after birth

As expected and according to specific crosses, Tyr::Cre/u;
ctnnb1Dex3/+ mice were produced in a Mendelian ratio (72 u/u;
ctnnb1Dex3/+ versus 67 Tyr::Cre/u; ctnnb1Dex3/+ live births).

However, all ctnnb1Dex3 mice died between 4 and 18 weeks of

age (Figure 6A). A distinct Tyr::Cre mouse line, Tyr::CreB, was used

Figure 2. Melanoblasts are numerous in ctnnb1Dex3 DA. Ventral
view of WT-Dct (A) and ctnnb1Dex3-Dct (B) E18.5 hearts stained with X-
gal. Note that ctnnb1Dex3-Dct samples contain numerous b-galacto-
sidase-stained cells (arrow) in the ductus arteriosus (DA). High
magnification of the WT-Dct (C) and ctnnb1Dex3-Dct (D) DA regions,
including the aorta (Ao) and the pulmonary trunk (PT). Scale bar (A, B)
= 1 mm.
doi:10.1371/journal.pone.0053183.g002

Figure 3. Transverse sections of WT and mutant ductus
arteriosus. WT-Dct (A, C, E) and ctnnb1Dex3-Dct (B, D, F) DA. Sections
were stained with X-gal (A, B), SMA (C, D) or DAPI in blue, SMA in red, b-
galactosidase in green (E, F). Note that numerous cells producing b-
galactosidase, corresponding to Mb, are present in ctnnb1Dex3-Dct DA
(F). Genotypes: WT-Dct = Tyr::Cre/u; +/+; Dct::LacZ/u, ctnnb1Dex3-Dct =
Tyr::Cre/u; ctnnb1Dex3/+; Dct::LacZ/u. Scale bar = 100 mm.
doi:10.1371/journal.pone.0053183.g003

Figure 4. SMA-negative cells of the DA of ctnnb1Dex3-Dct mice
are b-galactosidase-positive melanoblasts (Mb). Low (A–C) and
high (D–F) magnifications of transverse sections of ctnnb1Dex3-Dct DA
stained with b-galactosidase (A, D in green corresponding to Mb) and
SMA (B, E in red corresponding to SMC) antibodies. Superimposition of
these two immunostainings includes DAPI in blue (C, F). Note that b-
galactosidase-positive Mb (arrows) do not express SMA. These results
strongly suggest that differentiated Mc do not have smooth muscle cell
properties despite their common precursor. Nomenclature of the
genotype: ctnnb1Dex3-Dct = Tyr::Cre/u; f3/+; Dct::LacZ/u. Scale bars (A)
= 20 mm, (D) = 40 mm.
doi:10.1371/journal.pone.0053183.g004

Reduced Number of SMC and Closure of the DA
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to see if the site of integration of the transgene or other cis-

regulatory differences would affect the outcome [27]. Nonetheless,

all Tyr::CreB/u; ctnnb1Dex3/+ mice died within a similar age range

(between 3 and 12 postnatal weeks; Figure 6B), indicating that

the death of these animals was independent of the Tyr::Cre mouse

line used.

The main clinical sign presented by ctnnb1Dex3 mice was

prostration 24 hours prior to death. Such prostrated, heterozygous

ctnnb1Dex3 mice and their wild-type siblings were sacrificed and

autopsied. While never observed in the WT controls (Figure 7A,
C), a major dilation of the left atrium was observed macroscop-

ically in all mutant mice (Figure 7B, D) and a lesser dilation of

the left ventricle was observed in about half of the mice

(Figure 7D), Micro-computed tomography (CT) analysis after

FenestraH injection was performed on WT and ctnnb1Dex3 mice

(Figure 7E–H and movies S1, S2). This revealed a rightward

shift of the whole heart in live mutant animals, with a clear dilation

of the left atrium (Figure 7G, H).

WT and ctnnb1Dex3 hearts were examined at P1, P10 and P28.

At P1, WT and ctnnb1Dex3 hearts were comparable, indicating

that the enlargement of the left atrium was not associated with a

congenital malformation due to a developmental defect

(Figure 8A, D). At P10, the ctnnb1Dex3 left atrium was visibly

dilated (Figure 8B, E). By P28, the expansion of the left atrium

was substantial (Figure 7B, D and Figure 8C, F). Some dilation

of the left ventricle, not hypertrophy, was also visible in a limited

number of mutants by P28 (Figure 7D and Figure 8F).

Echocardiographic examination also showed substantial en-

largement of the left atrium, associated with thrombi of various

sizes (Figure 9). Thrombus formation was subsequent to chamber

dilation and aggravated over time (Figure 9C, D). In one case,

atrial myocardial rupture and pericardial blood effusion was

observed on ultrasound analysis, and led to the death of the

mouse. Atrial dilation was unlikely to be due to mitral valve

dysfunction, because the Doppler mitral inflow pattern was

normal (data not shown). Similarly, left-ventricular failure was

not the cause, because the fractional shortening was normal. These

data led to the hypothesis that death was due to the accumulation

of large thrombi in the left atrium and/or its rupture.

The ductus arteriosus is not fully closed in ctnnb1Dex3
mice

When the DA does not fully close after birth, a part of the

systolic left-ventricular stroke volume goes directly into the

pulmonary artery (left-to-right shunting), leading to a progressive

overload of the pulmonary circulation by an increase in

pulmonary pressure. Simultaneously, this volume overload triggers

the progressive dilation of the left cardiac cavities. Surprisingly, in

ctnnb1Dex3 mutant mice, this enlargement affected essentially the

left atrium, the left ventricle being more modestly and not

systematically dilated. Ultrasound analysis demonstrated that the

DA remained open in postnatal ctnnb1Dex3 mice, which is never

the case in WT mice (Figure 10A, B). Ultrasound (Figure 10C)

and color Doppler analyses (Figure 10D) showed blood flow back

through the patent foramen ovale (Figure 10E) from the right to

the left atrium of all ctnnb1Dex3 mice, but not WT mice.

The death of the ctnnb1Dex3 mice thus seemed to result from

the failure of DA closure and increased pulmonary pressure,

leading ultimately to retrograde blood flow through the foramen

ovale from the right to the left, driving the progressive dilation of

the left atrium and thrombus formation.

Figure 5. Melanoblasts replace a proportion of the smooth muscle cells in the ctnnb1Dex3 DA. SMA-positive and X-gal-positive cells in
transverse sections of E18.5 WT-Rosa and ctnnb1Dex3-Rosa DA were counted. Three categories of cells were distinguished: non-recombined SMC1
(SMA+ LacZ2), recombined SMC2 (SMA+ LacZ+), and recombined non-SMC (SMA2 LacZ+), corresponding to melanoblasts (Mb). Note that the
number of SMA+ LacZ+ SMC2 in WT-Rosa DA is similar to the number of SMA2 LacZ+ Mb in ctnnb1Dex3-Rosa DA. Genotypes: WT-Rosa = Tyr::Cre/u;
+/+; Rosa26/u, ctnnb1Dex3-Rosa = Tyr::Cre/u; ctnnb1Dex3/+; Rosa26/u. Note, the production of a mutated form of b-catenin in recombined cells did
not seem to greatly affect the number of floxed cells, suggesting that there was no cell non-autonomous effect on the floxed SMC. In both panels,
there were significant differences between the numbers of SMA+, LacZ+ cells and SMA2, LacZ+ cells (for each genotype, the number of cells were
estimated from 5–8 sections per embryo using 4 embryos: ** p-value ,0.01).
doi:10.1371/journal.pone.0053183.g005

Figure 6. ctnnb1Dex3 mice die of heart failure between the
second and fourth postnatal months. (A) Kaplan-Meier graph of
survival of Tyr::CreA/u; ctnnb1Dex3/+ and WT littermate controls
(Tyr::CreA/u; +/+ and u/u; ctnnb1Dex3/+). (B) Kaplan-Meier graph of
survival of Tyr::CreB/u; ctnnb1Dex3/+ and WT littermate controls
(Tyr::CreB/u; +/+). All members of both mutant populations perished
before their fourth month of life, in contrast to the full survival of all
their WT littermates.
doi:10.1371/journal.pone.0053183.g006

Reduced Number of SMC and Closure of the DA
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After birth, the very few Mc in the DA normally differentiate,

produce melanin and remain in the LigA. The number of

pigmented cells was substantially higher in ctnnb1Dex3 LigA than

WT LigA by four weeks (Figure 11A, B). Histological analysis

revealed that the ctnnb1Dex3 LigA was not fully closed

(Figure 11C–F). The surface areas of the intimal cushion and

lumen, when present, were larger in ctnnb1Dex3 than WT mice

(Figure 11G, H). Moreover, blood was observed in the canal and

large numbers of pigmented cells were present in the tunica media

of the ctnnb1Dex3 LigA (Figures 11E, F). Only ctnnb1Dex3

mice presented a PDA, as well as disorganized, fibrotic lung

alveolar structures (Figure 12). These observations suggested that

abnormally high pulmonary pressure may have been the result of

the PDA and cause lung damage in ctnnb1Dex3 mice as compared

to WT mice.

ctnnb1Dex3 mice can be partially rescued by
indomethacin

In humans, indomethacin is widely used to treat PDA, by

inhibiting the cyclooxygenases that participate in prostaglandin

biosynthesis. As a proof of concept, pregnant Tyr::Cre/Tyr::Cre; +/

+; Dct::LacZ/Dct::LacZ females that had been crossed to

ctnnb1Dex3/+ males, and thus carrying litters with both WT-Dct

and ctnnb1Dex3-Dct embryos, were injected with indomethacin at

E18.5 and compared with mock-injected controls. Embryos were

removed from three indomethacin-injected females, 4 hours after

injection. Five WT-Dct and five ctnnb1Dex3-Dct hearts were

Figure 7. Dilatation of the ctnnb1Dex3 left atrium at postnatal
day 28. Ventral views of Tyr::Cre/u; +/+ ( = WT) (A) and Tyr::Cre/u;
ctnnb1Dex3/+ ( = ctnnb1Dex3) (B) open thoracic regions at postnatal
day (P)28. Note the size of the ctnnb1Dex3 left atrium. Hematoxylin-
eosin staining of WT (C) and ctnnb1Dex3 (D) sections. Note the fibrosis
located in the mutant left atrium. Scale bar = 1.5 mm. Frontal (E, G) and
transverse (F, H) CT scan pictures of WT (E, F) and ctnnb1Dex3 (G, H) at
the truncal level at P28. LA: left atrium; LV: left ventricle; RA: right
atrium; RV: right ventricle.
doi:10.1371/journal.pone.0053183.g007

Figure 8. Progressive dilatation of the ctnnb1Dex3 left atrium
during the first weeks of life. The Tyr::Cre/u; ctnnb1Dex3/+ ( =
ctnnb1Dex3) left atrium expands during the first postnatal month.
Isolated WT (A–C) and ctnnb1Dex3 (D–F) hearts: A and D at postnatal
day (P) 1, B and E at P10, C and F at P28. Scale bars, (A, D) = 0.5 mm, (B,
E) = 1 mm, (C, F) = 2 mm. Note that the ctnnb1Dex3 left atrium is
abnormally large after P10. LA: left atrium, LV: left ventricle, RA: right
atrium, RV: right ventricle.
doi:10.1371/journal.pone.0053183.g008

Figure 9. Thrombosis develops in mutant mice during the
second postnatal month. (A) Ultrasound analysis of a Tyr::Cre;
ctnnb1Dex3/+ ( = ctnnb1Dex3) mouse with dilated left atrium
containing a thrombus. (B) Isolated thrombus. Expansion of the left
atrium is observed prior to the appearance of thrombosis in such
ctnnb1Dex3 mice: (C) at 6 weeks of age and (D) at 8 weeks, from the
same animal. In situ thrombus located in a ctnnb1Dex3 left atrium prior
to (E) and after dissection (F). Thr: (thrombus), LA: (left atrium), LV: (left
ventricle) and Lu: (lung). Scale bar, B = 1 mm.
doi:10.1371/journal.pone.0053183.g009

Reduced Number of SMC and Closure of the DA
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isolated and fixed to obtain transverse sections of the DA. Mb were

visualized by the activity of b-galactosidase (Figure 13A–D).

Indomethacin induced the closure of the DA as expected, in WT-

Dct mice, but also by means of the remaining SMC in

ctnnb1Dex3-Dct DA.

Newborn ctnnb1Dex3 pups were also directly subcutaneously

injected with indomethacin at birth, and this significantly

improved their survival rate and indeed cured about twenty per

cent of animals (n = 29; Figure 13E). Therefore, ctnnb1Dex3

mice could be partially rescued by indomethacin treatment,

suggesting that one of the primary causes of death in ctnnb1Dex3

mice was the failure of full DA closure at birth. However, we

cannot exclude the possibility that the left atrium is structurally

abnormal in ctnnb1Dex3 mutants, possibly contributing to the

death of the animals.

b-catenin does not lead to overall Cox-2 induction in the
DA
b-catenin can directly induce the expression of Ptgs2 (encoding

cyclooxygenase-2 or Cox-2) and stabilizes its mRNA by interacting

with AU-rich elements of the 39-UTR in vitro [33,34]. Cox-2 in

turn is known to catalyze the formation of PGE2, and elevated

levels of PGE2 are associated with an open DA.

One possible explanation for the failure of DA closure in

ctnnb1Dex3 mice is that unduly high levels of Cox-2 were induced

by the augmented b-catenin signaling. Therefore, we verified that

Cre-recombined, truncated ctnnb1Dex3 b-catenin mRNA was

detectable in ctnnb1Dex3 DA but not in WT DA, as determined

by extracting total RNA from DAs and performing semi-

quantitative RT-PCR (Figure 14A, B). b-catenin was visible in

both cytoplasm and nuclei, as assessed by immunofluorescence, in

both ctnnb1Dex3-Dct and WT-Dct Mb; as expected, more Mb

were visible in the former on sections (Figure 14C–H).

Nonetheless, the amount of Ptgs2 (Cox-2) mRNA in ctnnb1Dex3

DA was similar to that in WT DA (Figure 14A), indicating that

increased b-catenin signaling in ctnnb1Dex3 DA did not result in

massive induction of Cox-2. Therefore, Cox-2, although a target

Figure 10. Abnormal circulation of the blood in ctnnb1Dex3
adult heart. (A) Ultrasound analysis showing an open Tyr::Cre;
ctnnb1Dex3/+ (ctnnb1Dex3) DA. (B) Enlargement of (A) showing the
DA. (C) Ultrasound analysis of a ctnnb1Dex3 patent foramen ovale. (D)
Shunting through the foramen ovale as observed by echo Doppler
analysis in ctnnb1Dex3 mice. (E) The foramen ovale remains open in
ctnnb1Dex3 hearts. Note the presence of pigmented cells. LA: left
atrium, RA: right atrium, Ao: aorta, RVOT: right ventricle outflow tract,
DA: ductus arteriosus.
doi:10.1371/journal.pone.0053183.g010

Figure 11. Closure of the ligamentum arteriosum in
ctnnb1Dex3 adult heart. The Tyr::Cre; ctnnb1Dex3/+ ( = ctnnb1Dex3)
ligamentum arteriosum (LigA) is not fully closed, rendering it a patent
ductus arteriosus. At P28, the LigA does not usually show macroscopic
hyperpigmentation in wildtype (WT) mice (arrows, A), whereas Tyr::Cre;
ctnnb1Dex3/+ ( = ctnnb1Dex3) LigA does (B). Transverse sections show
that the WT LigA (C) is fully closed and does not contain any Mc,
whereas ctnnb1Dex3 LigA (D–F) is only partially closed, containing both
blood in the lumen and numerous pigmented melanocytes in the wall
(E, F). The areas occupied by the intimal cushion (ic) and lumen (l) are
shown in G and H, respectively. Cross-sections of the LigA show that the
outer tunica is dense, while the inner ellipsoid part, known as the
intimal cushion, has a distinct aspect. In ctnnb1Dex3 mice, a lumen is
observable inside the ic. Ao: aorta, LigA: ligamentum arteriosum, Pa:
pulmonary artery, Mc: melanocyte. Scale bars, (A, B) = 0.25 mm, (C, D)
= 100 mm, (E) = 50 mm and (F) = 20 mm. For each genotype, the number
of cells were estimated from 8-10 sections per LigA using 4 mice. *: p-
value ,0.05.
doi:10.1371/journal.pone.0053183.g011
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of b-catenin, is probably not principally involved in the failure of

DA closure in mutant mice at birth.

ctnnb1Dex3-mi mice lacking melanocytes still die of
heart failure

Mitf-deficient mice (mi = mitfvga9/vga9) have no Mc and a white

coat, resulting from a recessive null allele for the microphthalmia-

associated transcription factor. In mi mice, Mc are genetically

ablated during development at around E11.5, which is after

specification of the common SMC2/Mc precursor at about E9.0,

but well before birth [22]. To evaluate the contribution of Mc to

the full closure of the ctnnb1Dex3 DA at birth, ctnnb1Dex3-mi

(Tyr::Cre/u; ctnnb1Dex3/+; mitfvga9/vga9) mice were produced. As

anticipated, the ctnnb1Dex3-mi mice lacked cutaneous Mc and

were white, like mi mice (data not shown). Surprisingly,

ctnnb1Dex3-mi mice showed clinical signs similar to ctnnb1Dex3

mice and died at similar ages (Figure 15A). Left atrium

enlargement was observed in ctnnb1Dex3-mi mice at P28

(Figure 15B, C). PDA was observed at P2 in ctnnb1Dex3-mi,

but not in mi mice (Figure 15D, E).

Additional mice were generated in order to estimate the

numbers of Mb, through b-galactosidase activity, and SMC

through SMA immunoreactivity, in transverse sections of the DA.

Tyr::Cre/u; ctnnb1Dex3/+; mivga9/vga9; Dct::LacZ/u (ctnnb1Dex3-mi-

Dct) and Tyr::Cre/u; +/+; mivga9/vga9; Dct::LacZ/u (mi-Dct) mice

were compared to ctnnb1Dex3-Dct mice (cf. Figures 2 and 3).

No Mb were observed in the DA of ctnnb1Dex3-mi-Dct or mi-

Dct, in contrast to the ctnnb1Dex3-Dct DA. However, the

numbers of SMC were similar in ctnnb1Dex3-Dct and

ctnnb1Dex3-mi-Dct DA and reduced relative to the DA of mi-

Dct, such that no cellular compensation for SMC was observed in

ctnnb1Dex3-mi-Dct DA (Figure 15F).

The general heart morphology appears disrupted in

ctnnb1Dex3-mi mice compared to mi mice (Figure 15B, C), as

this is the case for ctnnb1Dex3 mice compared to WT mice

(Figure 7C, D). A conjunction of events may explain these

phenomenona, which are potentially linked, but are not yet

understood. These abnormalities could be due to the general

blood flow defect in the mutant mice, leading to abnormal

pressures on the chambers, thus affecting the morphology.

However, it could be associated with melanocytes. Indeed, Mc

are present in the heart, and not only in the DA [25,26]. A careful

analysis allowed the visualization of a general increase in Mc

numbers in different parts of ctnnb1Dex3 hearts. It includes the

foramen ovale (Figure 10E), and the mitral, tricuspid and aortic

valves (not shown). In wild-type and ctnnb1Dex3 hearts, no Mc

was found in the pulmonary valves. All ctnnb1Dex3 Mc of the

heart would have a different expression pattern compared with

WT Mc, leading to molecular and cellular modifications. Besides

the consequence on the DA, these modifications do not appear

dramatic on ctnnb1Dex3 heart. The valves did not present major

defects and the Doppler mitral inflow pattern was normal.

However, mi mice do not have Mc in the heart due to the lack

of Mitf. Mitf is not only expressed in Mc, it is also expressed in

cardiomyocytes and is important to regulate cardiac growth and

hypertrophy [35]. On C57BL/6 background, mi hearts are not

dramatically affected. The conjunction of the lack of Mitf in the

heart with the disappearance of an increased number of Mc may

explain the different heart morphology and a potential earlier

death of ctnnb1Dex3-mi mice, although this hypothesis remains

elusive.

In order to confirm that b-catenin does not play a major role in

the cardiac Mc lineage after its segregation from SMC2, Dct::Cre/

u; ctnnb1Dex3/+ mice were also produced, and found to be

normally viable, with no evident enlargement of the left atrium

when sacrificed at one-year old. In these mice, the activated b-

catenin is produced specifically in Mb after specification. In

another approach, Tyr::CreERt2/u mice [36] were crossed with

ctnnb1Dex3/+ mice to produce a tamoxifen-inducible CreERt2 in

Tyr-expressing cells. Tamoxifen was administered at E18.5, well

after the segregation of the SMC2 and Mc lineages, and all double

heterozygous mice were phenotypically normal: viable, again with

no enlargement of the left atrium. We counted Dct/Trp2-positive

cells, corresponding to Mc, in DA sections at P2 in both

tamoxifen- and mock-induced, unrecombined Tyr::CreERt2/u;
ctnnb1Dex3/+ mice. The numbers were very small in both cases,

similar to that in WT mice (not shown). Repeating these

experiments in both WT and ctnnb1Dex3 backgrounds using mi

mice, as expected from the results in Figure 15F, failed to detect

any Dct/Trp2-positive cells. The mice were viable and with no

cardiac defect.

In conclusion, the DA of ctnnb1Dex3-mi and ctnnb1Dex3 mice

did not fully close, demonstrating that the presence or absence of

differentiated Mc was irrelevant to the onset of PDA. Rather, the

absence of a significant proportion of SMC (SMC2 population)

was associated in both cases with the failure of full DA closure and

death; indomethacin injection reduced or prevented these

manifestations (see Figure 13).

Figure 12. Histological analysis of WT and ctnnb1Dex3 lungs at
P28. (A) WT ( = Tyr::Cre/u; +/+) and (B) ctnnb1Dex3 mice. Note the
disorganized alveolae of the mutant lung. Nonetheless, the lung cells
do not express the ctnnb1Dex3 transgene, suggesting that the effect is
cell non-autonomous. Scale bars, (A, C, D) = 50 mm, (B) = 20 mm.
doi:10.1371/journal.pone.0053183.g012
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Discussion

We have demonstrated here that the increased b-catenin

activity modifies the fate of a fraction of the smooth muscle cells

(SMC2) of the DA into Mc, leading to postnatal PDA. We showed

that the presence of numerous Mc in the DA is not the primary

cause of the failure of the DA to close. Instead, the substantial

reduction in number of SMC2 prevents the closure. ctnnb1Dex3

mice die within a few months, unlike other mutant mice presenting

a PDA, which die in the first days after birth.

SMC2 and Mc have a common precursor
b-catenin can favor the specification of Mb, but it does not

induce Mc proliferation [30,37]. However, b-catenin has been

reported to induce cell proliferation of SMC [38,39]. If SMC2 and

Mc had two different precursors, we would expect to observe more

SMC2, rather than an increased proportion of Mc in our model

system. Conversely, if SMC2 and Mc shared a common precursor,

we would expect fewer (or no) SMC2 and an increase in the

number of Mc. We observed this latter scenario. The production

of more Mc seems to occur at the expense of SMC2 in

ctnnb1Dex3 mice. Indeed, we showed that the number of

SMC2 missing in the mutant DA was the same as the number

of Mb appearing (see Figure 5). Moreover, the same disappear-

ance of SMC2 was observed in mi mice, in which Mc disappear

after specification (See Figure 15). These observations suggest

that SMC2 and Mc have a common precursor.

However, we cannot formally exclude the existence of other

mechanisms, and that the disappearance of SMC2 and presence of

high numbers of Mc are not directly linked. For instance, invasion

of the DA by Mb may induce the loss of the SMC2 population by

an unknown mechanism.

Absence of SMC2 leads to PDA
The ctnnb1Dex3 mice display incomplete closure of the DA, an

enlarged left atrium and die several weeks after birth. The death of

these animals is certainly related to thrombus formation. Mc are

found in the heart including the left atrium [22,24,25,26,40]. The

Figure 13. Indomethacin treatment and survival of ctnnb1Dex3 mice. Indomethacin treatment results in the closure of WT and ctnnb1Dex3
( = Tyr::Cre/u; ctnnb1Dex3/+) DA and allows the survival of ctnnb1Dex3 mice. Mock (A, B) and indomethacin (indo, 10 mg/kg body weight) (C, D)
intraperitoneal injections into pregnant Tyr::Cre/Tyr::Cre; +/+; Dct::LacZ/Dct::LacZ females carrying Tyr::Cre/u; +/+; Dct::LacZ/u (A, C) and Tyr::Cre/u;
ctnnb1Dex3/+; Dct::LacZ/u (B, D) E18.5 embryos. Four hours later, embryos were isolated, fixed, X-gal stained, transversally sectioned through the DA
and counterstained with eosin. We treated three pregnant females and sectioned ten embryonic hearts (five WT and five mutants). The ductus
arteriosus was closed in all cases. Note that the numbers of Dct+ cells derived from ctnnb1Dex3-Dct embryos obtained from pregnant mothers
injected with indomethacin or mock-injected were similar. (E) Kaplan-Meier curves of WT and ctnnb1Dex3 newborn pups treated or mock-treated
with indomethacin (6 mg/kg body weight indomethacin within 12 hours of birth). Ultrasound analysis was performed on treated versus non-treated
animals during the second and third months, which associated survival of treated ctnnb1Dex3 to the size of the left atrium (not shown).
Indomethacin-treated ctnnb1Dex3 mice survived significantly longer than mock-treated mice (p,0.009). Note similar results were obtained when
ctnnb1Dex3 mi mice were treated with indomethacin or mock. Scale bars, (A, B) = 100 mm, (C, D) = 50 mm.
doi:10.1371/journal.pone.0053183.g013
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enlargement of the left atrium may theoretically be an indirect

consequence of an abnormality in the left atrium itself, due to the

increased Wnt signaling in Mc, which may affect the expression of

various genes and/or have haemodynamic effects. The likelihood

of this hypothesis was small considering that ctnnb1Dex3-mi mice

do not have Mc in the heart but present the same phenotype as the

ctnnb1Dex3 mice. However, we cannot exclude the possibility that

Figure 14. ctnnb1Dex3 is produced in melanoblasts and SMC cells of E18.5 DA. (A) The expression of b-catenin (bcat), Mitf-M
(melanoblasts) and Hprt (loading control) was analyzed by RT-PCR on mRNA isolated from WT ( = Tyr::Cre/u; +/+) and mut ( = ctnnb1Dex3 = Tyr::Cre/
u; f3/+) DA at E18.5. M corresponds to the size marker. The ‘‘a’’ band (479 bp) corresponds to the non-recombined b-catenin cDNA or WT, whereas the
‘‘b’’ band (251 bp) corresponds to the recombined b-catenin cDNA or ctnnb1Dex3. Ptgs2 (Cox2) is weakly expressed in WT and mutant DA. (B)
Schematic of the WT versus mut bcat amplicons. (C–H) Immunolocalization of b-catenin in red (C, E, F, H), b-galactosidase in green (D, E, G, H) and
DAPI in blue (E, H) in WT-Dct (C–E) and ctnnb1Dex3-Dct (F–H) sections of E18.5 DA. Note that b-catenin is found in both the cytoplasm and the
nucleus of ctnnb1Dex3-Dct DA.
doi:10.1371/journal.pone.0053183.g014

Figure 15. The PDA of ctnnb1Dex3 mice is not rescued by removing melanocytes. (A) Kaplan-Meier survival graph for ctnnb1Dex3-mi
( = Tyr::Cre/u; ctnnb1Dex3/+; mivga9/mivga9), ctnnb1Dex3 ( = Tyr::Cre/u; ctnnb1Dex3/+; +/+) and mi ( = Tyr::Cre/u; +/+; mivga9/mivga9) littermate controls.
There is no significant difference between survival of ctnnb1Dex3-mi and ctnnb1Dex3 populations. Macroscopic view of (B) mi and (C) ctnnb1Dex3-
mi hearts at P28. Note the enlargement of the ctnnb1Dex3-mi left atrium (cf. Figure 8). Transverse eosin-stained sections of (D) mi and (E)
ctnnb1Dex3-mi DA at P2. Note that the ctnnb1Dex3-mi DA is not closed (cf. Figure 11). (F) Numbers of SMA-positive and LacZ-positive cells were
evaluated after SMA, LacZ and DAPI staining in the DA of mi-Dct ( = Tyr::Cre/u; +/+; mivga9/mivga9; Dct::LacZ/u), ctnnb1Dex3-Dct ( = Tyr::Cre/u;
ctnnb1Dex3/+; +/+; Dct::LacZ/u) and ctnnb1Dex3-mi-Dct ( = Tyr::Cre/u; ctnnb1Dex3/+; mivga9/mivga9; Dct::LacZ/u) mice at E18.5. For each genotype, the
number of cells were estimated from 5–10 sections per embryos using 3 mice. mb = melanoblast. Scale bar (D, E) = 50 mm. *: p-value ,0.05, **: p-
value ,0.01, ns = non significant.
doi:10.1371/journal.pone.0053183.g015
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these mutant mice (with or without Mc) may present undetected

weaknesses of the left atrium per se.

Nonetheless, to examine a possible effect from within the

differentiated Mc lineage, we conducted some complementary

experiments to assess these possibilities. For example, inducing the

production of the activated b-catenin within Tyr-expressing cells,

after the segregation of SMC2 from their common precursors with

Mc (at E18.5), yielded a normal cardiac phenotype, as did the

expression of the activated b-catenin in Mb specifically (Dct-

expressing cells).

These approaches, together with our observations in mi mice,

indicate that neither the induction of Wnt signaling in Tyr- or Mitf-

expressing Mb, nor the abnormally large number of Dct/Trp2-

expressing Mb in the ctnnb1Dex3 DA, nor both, are sufficient to

induce the cardiac phenotype observed. The main cause of the

PDA is presumably associated with the absence of SMC2 from the

DA. The SMC2 population therefore prevents, rather that the Mc

population favors, the development of PDA.

An induction of the prostaglandin pathway by the
activated beta-catenin is not the primary cause of PDA

Fetal PDA is controlled by many factors, the most important of

which are proportionally low fetal blood oxygen partial pressure

[41] and cyclooxygenase-mediated products of arachidonic acid

metabolism (primarily PGE2 and prostacyclin) [42]. Several

mutant mouse lines present post-natal PDA as a result of targeting

genes of the prostaglandin pathway, acting on contractility (Ptgs2,

Pgdh and EP4).

At the molecular level, b-catenin had been shown to induce

Ptgs2/Cox-2 expression [33]. Thus, it could have been argued that

in our PDA model, the expression of b-catenin in the differen-

tiated, more numerous Mc could lead to the PDA. However, we

did not observe an increase in Ptgs2/Cox-2 expression level in the

ctnnb1Dex3 DA, as shown in Figure 14. Moreover, this

hypothesis is unlikely because the ctnnb1Dex3-mi DA does not

contain cells producing the activated b-catenin, namely SMC2

and Mc, but still presents a PDA.

Relevance for human PDA
ctnnb1Dex3 and ctnnb1Dex3-mi mice have a smaller number of

SMC in the DA than WT mice, and present a dilated left atrium,

with moderate left ventricular enlargement in about half of the

mice. They suffer a high mortality rate, and this was due to

thrombosis and left atrium rupture, rather than the left ventricular

failure observed in the human clinical context. These character-

istics are thus not the standard characteristics of human PDA.

However, although indomethacin is an effective treatment for

PDA due to prematurity in humans, it is less effective in term

infants, as was also the case for ctnnb1Dex3 mice.

It had not previously been observed that a reduction of smooth

muscle cell numbers was correlated with incomplete DA closure in

humans. It could theoretically be possible to look for abnormally

low numbers of SMC in the DA of term infants with

indomethacin-unresponsive PDA, in particular. However, it is

difficult (or indeed impossible) to determine objectively whether

the numbers of SMC in DA from such patients differ from normal

cardiac-healthy, age-matched individuals. There is substantial

variability in the number of SMC in various human DA;

furthermore there is no ethically appropriate control for deter-

mining reference values for normal human DA. To compound

things, a very large cohort of normal and abnormal DA would be

necessary to compensate for population variability, given the

possible genetic differences and effects of the age of the patients.

On the other hand, in C57BL/6 mice (a congenic mouse line) at a

defined stage, the number of smooth muscle cells in the DA does

not differ between individuals.

In human neonates displaying a PDA, left atrium dilation is only

observed when the blood velocity of the shunt is high. In these

conditions, the left-atrium-to-aortic-root ratio (LAARR) is greater

than 1.7; most PDA patients have a LAARR of 1.5. In

ctnnb1Dex3 mice, we found that the LAARR ratio was greater

than 5 and in many cases around 8 (data not shown), indicating a

very high output through the DA and/or a higher compliance of

the atrial tissue than in humans. Most of the mouse strains with a

high blood flow PDA die shortly after birth, such that in vivo

evaluation is very difficult. By inactivating the p45 subunit of the

transcription factor Nfe2, Echtler et al. [43] studied the contribu-

tion of platelets to DA closure in mice. In their homozygous mouse

model, they report a lack of DA closure with high blood flow

through the channel; they estimated that about 40% of the cardiac

output passes through the PDA. These animals show typical

features of pulmonary remodeling (in the network of collagen

fibers along vessels) and an increase in right ventricular pressure

(augmentation of right ventricular wall thickness). Nevertheless,

macroscopic analysis of left ventricular sections did not reveal

either dilation or hypertrophy. The absence of left ventricular

dilation in cases of high flow PDA may be a particular aspect of

mouse physiology.

Infants with PDA who are not sufficiently responsive to

indomethacin treatment may have an unidentified molecular

cause. However, the physiological read-out could be a previously

unsuspected cellular defect.

SMC1 cannot naturally compensate for the lack of SMC2
The main cell components of the tunica media of the DA are

the SMC1 and SMC2 populations, which are involved in its

closure. In ctnnb1Dex3 mice, the number of SMC2 was reduced

in favor of Mc, but although the number of SMC1 remained

normal, this was not sufficient to allow the DA to close fully. It is

surprising that the SMC1, although numerous, were unable to

allow full closure through some sort of compensation mechanism,

such as proliferation, in the absence of SMC2. Steric constraints

were not imposed by the presence of Mc because, in Mc-deficient

ctnnb1Dex3-mi mice, the number of SMC1 remained unaffected

and the DA still did not fully close. This latter observation even

suggested that the number of SMC1 cell divisions is controlled

during development independently of the number of SMC2 cells.

The failure of DA closure associated with the absence of SMC2

could be due to the low total SMC count, or to SMC2 having an

essential role in the development of the mature DA (despite SMC1

and SMC2 being histologically indistinguishable). Other differ-

ences between SMC1 and SMC2 have not been described. It

would be valuable to characterize these two cell types at the

molecular level to resolve this question. One possibility could be to

look at MYH11 expression, which has been shown to be fully

specific of SMC [44]. Potentially, the production/localization of

MYH11 could be different in SMC1 and SMC2.

In principle, compensation could occur either at the cellular

level, as indicated above, or at a molecular level. Thus, for SMC

located in the DA, numerous proteins could contribute to

molecular compensation. For instance, a major decrease of Cox-

2 production in mutant SMC1 could allow the closure of the DA,

although we found no evidence for such a reduction in Cox-2

levels. Other limited molecular compensations may have taken

place in SMC1, which would not be sufficient to prevent PDA.

SMC1 and SMC2 may also both be involved in the closure of

the DA, but fulfilling different functions. This scenario is consistent

with the partial closure of the DA observed in mutant mice where
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there is about 80% of the WT number of SMC (SMC1). It is

nevertheless surprising that the absence of only 20% of the cells

(SMC2) is fatal. Hyperstimulation of SMC1 with indomethacin in

late gestation ctnnb1Dex3 embryos showed that SMC1 do retain

the capacity to close the DA. Moreover, indomethacin treatment

of ctnnb1Dex3 newborns with PDA prolonged their life span and

even cured some of the animals. Ultrasound analysis revealed that

in the cured animals, both the DA and the foramen ovale were

closed, and the left atrium was of normal size. However, in the

partially cured mice, although the DA was closed, the foramen

ovale remained open, which correlates with their enlarged left

atria. These differences could be related to the timing of injection/

closure of the DA. Another explanation could be related to the

increased number of melanocytes in the ctnnb1Dex3 foramen

ovale, which might interfere with its closure (Figure 10E).

Function of melanocytes in the DA and in the heart
Melanocytes are consistently found in all heart valves except

pulmonary valves [26]. Moreover, a few Mc are also consistently

found in the DA. These observations argue that the presence of

Mc in the heart is regulated rather than accidental. Nevertheless,

the function of these cardiac Mc remains poorly understood, as

these cells do not appear to be essential for general cardiac

morphogenesis and physiology. Indeed, mice lacking Mc (e.g.

KitW/Wv or Mitfvga9/vga9 mice) or displaying strong pigmentation

(e.g. Tyr::NrasQ61K) in cardiac valves and septa are viable, with

apparently normal hearts [26]. Moreover, we report here that the

lack of either pigmented or unpigmented differentiatied melano-

cytes in the DA does not lead to an observable phenotype. Thus,

cardiac Mc would most likely play a subtle role, which would

become critical under stress conditions.

Cardiac Mc could be involved in atrioventricular (AV) valves

development from the endocardial cushions. Valve development

requires remodeling of the extra-cellular matrix [45] and it has

been shown that classic Mc produce and secrete metalloproteases

[46]. This function of the Mc in the AV valves could continue into

adulthood. Indeed, Mc and interstitial cells could be involved in

tissue homeostasis and could affect the mechanic properties of the

AV valves, as it has been shown that pigmentation stiffens murine

tricuspid valve leaflet [47].

Mc of the atrium and pulmonary veins have been shown to

contribute to atrial arrhythmia triggers [40]. Deregulation of

intracellular calcium and reactive oxygen species (ROS) levels

have been described in patients with atrial fibrillation. Dct

participates to the regulation of these levels in Mc and mice

lacking cardiac Mc do not develop arrhythmias. As we know that

skin Mc have a buffer role for various UV-induced physical and

chemical stresses, we could hypothesise that cardiac Mc could play

a buffer role for calcium and ROS–induced stresses.

The function of the Mc of the DA remains even more elusive,

since we showed here that they do not play a role per se in the

closure of the DA. Their persistence in the LigA after birth

suggests that they could maybe play a role in the homeostasis of

the region. In zebrafish, numerous Mc have been described

surrounding the aorta in the adult, whereas they were absent

during development, suggesting a later role [48]. To sum up, it is

still not possible to draw conclusions about the physiological role, if

any, of Mc in the DA in a healthy and non-stressful environment.

However, another descendant from the same precursor, the

VNCC-derived SMC2 population, is irreplaceable in preventing

PDA by promoting closure of the DA at birth.

Materials and Methods

Mice
Crosses are summarized in Table S1. Tyr::Cre, Tyr::CreERt2,

Dct::Cre, b-catenin ctnnb1Dex3 (also known as f3), b-catenin

ctnnb1Dex2-Dex6 (also known as f2-6), Dct::LacZ, Rosa26R, and

Mitfvga9 mice were used in this study [27,31,36,49,50,51,52,53,54].

Tyr::Cre mice produce the enzyme Cre, which recognizes and

intramolecularly recombines LoxP sequences in cells expressing

the tyrosinase promoter at any point throughout life. In Dct::LacZ

reporter mice, the transgene LacZ, producing the enzyme b-

galactosidase, is under the control of the dopachrome tautomerase

(Dct) promoter. Rosa26R floxed reporter mice activate the LacZ

transgene to produce b-galactosidase only within any recombined

cells and all of their descendants. This work was carried out in

accordance with the Policies of the French Committee of Ethics.

Mice were maintained in the SPF mouse colony of the Institut

Curie according to French and EU law and is fully accredited by

the French Direction of Veterinary Services (C 91 471 108,

february 16th, 2011). Animal surgery and experimentation are

authorized by the French Direction of Veterinary Services to LL C

91-642, July 20th, 2012) and BF (# 31–205, 2011).

Mouse embryo and tissue preparation, X-gal staining and
immunohistochemistry

Mouse embryos and tissues were collected and rinsed in cold

PBS and fixed by incubation for 15–20 minutes in PBS containing

0.25% glutaraldehyde at 4uC. They were rinsed twice in cold PBS

and incubated for 16 hours in 30% sucrose/PBS at 4uC, then for

5 hours in sucrose (30%)/OCT(50%)/PBS at 4uC, embedded in

OCT compound (TissueTek, 4583, Sakura Finetechnical Co. Ltd.

Tokyo, Japan) and sectioned. PBS containing 0.25% glutaralde-

hyde was injected into the left ventricles of adult mice after

anesthesia. Hearts were then removed and treated as described

above. For X-gal staining, 8 mm-thick sections were treated as

previously described [36]. For immunofluorescence, 8 mm-thick

sections were treated as previously described [55]. Whole heart

samples placed on agarose gels were observed from the ventral

side. All specimens of DA and LigA were sectioned vertically for

X-gal staining and immunofluorescence analysis. Antibodies

directed against beta-galactosidase and alpha-smooth muscle actin

(SMA) were purchased from Abcam (ab9361) and Sigma (A5228),

respectively.

Determination of the intimal cushion (ic) and lumen (l)
areas

DA/LigA were sectioned and stained with eosin. The areas of

the intimal cushion and the lumen were determined using ImageJ

(http://rsbweb.nih.gov/ij/) version 1.37.

RT-PCR
Total RNA was isolated from mouse LigA with Trizol

(Invitrogen). Reverse transcriptase-PCR (RT-PCR) experiments

were performed using oligonucleotides specific to b-catenin

(ctnnb1), Mitf-M (mitf) and Hprt sequences (Table S2).

Echocardiography and micro-CT
For routine examination and color Doppler analysis, transtho-

racic echocardiograms were performed in a Sonos 5500 on mice

anesthetized with 2% isoflurane as described previously (Philips

Ultrasound, USA) [56]. To visualize the DA and foramen ovale,

high-resolution imaging was performed with a 30 MHz probe on a

Vevo 660 (Visualsonics, Canada) with the same anesthetic
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regimen. Due to the rightward shift of the heart of ctnnb1Dex3-

mice, non-conventional incidences were employed. Mice were

processed as previously described for micro-CT [57].

Indomethacin treatment
An indomethacin (Sigma) stock solution was prepared as a

10 mg/ml solution in ethanol and stored at 220uC. Working

solutions were prepared extemporaneously as 500 ng/ml solutions

in PBS. E18.5 pregnant females were injected intraperitoneally

with 10 mg/kg body weight indomethacin and the embryos

harvested 4 hours later. Newborn mice were injected subcutane-

ously with 6 or 12 mg/kg body weight indomethacin within

12 hours of birth, using a microsyringe (Fisher-Bioblock, France

W23305). No difference in long-term survival was observed

between animals treated with the two doses of indomethacin.

Supporting Information

Table S1 Abbreviation, Genotype and main character-
istics of the used transgenic animals. Rosa26R allows to

follow up the defloxed cells [53]. Dct::LacZ allows to visualize

melanoblasts/melanocytes [52]. Tyr::Cre allows to deflox gene

from E9.5 in some vagal neural crest derivatives, in particular

melanocytes [22,27]. Tyr::CreERt2 allows to deflox gene after

tamoxifen induction in melanocytes [36]. Dct::Cre allows to deflox

gene after E12.5 in a chimeric way in melanocytes [50].

Melanoblasts stop expanding in mivga9/vga9 mice [54]. The b-

catenin gene (Ctnnb1) was floxed in the introns 2 and 3

(ctnnb1Dex3) [31].

(DOC)

Table S2 Oligonucleotides used to determine the pres-
ence of b-catenin, Mitf-M and Hprt and the length of the
amplicons.
(DOC)

Movie S1 Reconstructed truncal regions from CT scan
pictures of WT (Tyr::Cre/6; +/+) at the truncal level at
P28.
(AVI)

Movie S2 Reconstructed truncal regions from CT scan
pictures of ctnnb1Dex3 (Tyr::Cre/6; ctnnb1Dex3/+) at the
truncal level at P28. Note in Tyr::Cre/u; ctnnb1Dex3/+; mice, the

left atrium is so enlarged that it affects the angular orientation of

the heart by displacement.

(AVI)
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HCE was supported by Nevus Outreach, Inc. and Naevus 2000 France-

Europe. We thank members of the animal colony and imaging facilities of

the Institut Curie. We dedicate this manuscript to the memory of Christine

Larue.

Author Contributions

Conceived and designed the experiments: IY SC LM LL. Performed the

experiments: IY SC IP DC MK EB JB MM PC FB VD LM. Analyzed the

data: IY SC LM LL. Contributed reagents/materials/analysis tools: HY

MT. Wrote the paper: LM HCE LL.

References

1. Schneider DJ, Moore JW (2006) Patent ductus arteriosus. Circulation 114:

1873–1882.

2. Cotton RB, Stahlman MT, Kovar I, Catterton WZ (1978) Medical management

of small preterm infants with symptomatic patent ductus arteriosus. J Pediatr 92:

467–473.

3. Gersony WM, Peckham GJ, Ellison RC, Miettinen OS, Nadas AS (1983) Effects

of indomethacin in premature infants with patent ductus arteriosus: results of a

national collaborative study. J Pediatr 102: 895–906.

4. Satoda M, Zhao F, Diaz GA, Burn J, Goodship J, et al. (2000) Mutations in

TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nat

Genet 25: 42–46.

5. Zhu L, Vranckx R, Khau Van Kien P, Lalande A, Boisset N, et al. (2006)

Mutations in myosin heavy chain 11 cause a syndrome associating thoracic

aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet 38:

343–349.

6. Winnier GE, Kume T, Deng K, Rogers R, Bundy J, et al. (1999) Roles for the

winged helix transcription factors MF1 and MFH1 in cardiovascular

development revealed by nonallelic noncomplementation of null alleles. Dev

Biol 213: 418–431.

7. Coggins KG, Latour A, Nguyen MS, Audoly L, Coffman TM, et al. (2002)

Metabolism of PGE2 by prostaglandin dehydrogenase is essential for remodeling

the ductus arteriosus. Nat Med 8: 91–92.

8. Morano I, Chai GX, Baltas LG, Lamounier-Zepter V, Lutsch G, et al. (2000)

Smooth-muscle contraction without smooth-muscle myosin. Nat Cell Biol 2:

371–375.

9. Segi E, Sugimoto Y, Yamasaki A, Aze Y, Oida H, et al. (1998) Patent ductus

arteriosus and neonatal death in prostaglandin receptor EP4-deficient mice.

Biochem Biophys Res Commun 246: 7–12.

10. Nguyen M, Camenisch T, Snouwaert JN, Hicks E, Coffman TM, et al. (1997)

The prostaglandin receptor EP4 triggers remodelling of the cardiovascular

system at birth. Nature 390: 78–81.

11. Yu Y, Fan J, Chen XS, Wang D, Klein-Szanto AJ, et al. (2006) Genetic model of

selective COX2 inhibition reveals novel heterodimer signaling. Nat Med 12:

699–704.

12. Loftin CD, Trivedi DB, Tiano HF, Clark JA, Lee CA, et al. (2001) Failure of

ductus arteriosus closure and remodeling in neonatal mice deficient in

cyclooxygenase-1 and cyclooxygenase-2. Proc Natl Acad Sci U S A 98: 1059–

1064.

13. Merscher S, Funke B, Epstein JA, Heyer J, Puech A, et al. (2001) TBX1 is

responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome.

Cell 104: 619–629.

14. Marmon LM, Balsara RK, Chen R, Dunn JM (1984) Congenital cardiac

anomalies associated with the DiGeorge syndrome: a neonatal experience. The

Annals of thoracic surgery 38: 146–150.

15. Carlson C, Sirotkin H, Pandita R, Goldberg R, McKie J, et al. (1997) Molecular

definition of 22q11 deletions in 151 velo-cardio-facial syndrome patients.

Am J Hum Genet 61: 620–629.

16. Huang J, Cheng L, Li J, Chen M, Zhou D, et al. (2008) Myocardin regulates

expression of contractile genes in smooth muscle cells and is required for closure

of the ductus arteriosus in mice. J Clin Invest 118: 515–525.

17. Le Douarin N, Kalcheim C (1999) The neural crest; Press CU, editor.

Cambridge: Cambridge University Press. 445 p.

18. Waldo KL, Kirby ML (1993) Cardiac neural crest contribution to the

pulmonary artery and sixth aortic arch artery complex in chick embryos aged

6 to 18 days. The Anatomical record 237: 385–399.

19. Bergwerff M, Verberne ME, DeRuiter MC, Poelmann RE, Gittenberger-de

Groot AC (1998) Neural crest cell contribution to the developing circulatory

system: implications for vascular morphology? Circulation research 82: 221–231.

20. Bergwerff M, DeRuiter MC, Gittenberger-de Groot AC (1999) Comparative

anatomy and ontogeny of the ductus arteriosus, a vascular outsider. Anatomy

and embryology 200: 559–571.

21. Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the

mammalian cardiac neural crest. Development 127: 1607–1616.

22. Puig I, Yajima I, Bonaventure J, Delmas V, Larue L (2009) The tyrosinase

promoter is active in a subset of vagal neural crest cells during early development

in mice. Pigment Cell Melanoma Res 22: 331–334.

23. Nakamura T, Colbert MC, Robbins J (2006) Neural crest cells retain

multipotential characteristics in the developing valves and label the cardiac

conduction system. Circ Res 98: 1547–1554.

24. Mjaatvedt CH, Kern CB, Norris RA, Fairey S, Cave CL (2005) Normal

distribution of melanocytes in the mouse heart. Anat Rec A Discov Mol Cell

Evol Biol 285: 748–757.

25. Brito FC, Kos L (2008) Timeline and distribution of melanocyte precursors in

the mouse heart. Pigment Cell Melanoma Res 21: 464–470.

26. Yajima I, Larue L (2008) The location of heart melanocytes is specified and the

level of pigmentation in the heart may correlate with coat color. Pigment Cell

Melanoma Res 21: 471–476.

Reduced Number of SMC and Closure of the DA

PLOS ONE | www.plosone.org 12 January 2013 | Volume 8 | Issue 1 | e53183



27. Delmas V, Martinozzi S, Bourgeois Y, Holzenberger M, Larue L (2003) Cre-

mediated recombination in the skin melanocyte lineage. Genesis 36: 73–80.
28. Porter SD, Meyer CJ (1994) A distal tyrosinase upstream element stimulates

gene expression in neural-crest-derived melanocytes of transgenic mice: position-

independent and mosaic expression. Development 120: 2103–2111.
29. Dorsky RI, Moon RT, Raible DW (1998) Control of neural crest cell fate by the

Wnt signalling pathway. Nature 396: 370–373.
30. Lee HY, Kleber M, Hari L, Brault V, Suter U, et al. (2004) Instructive role of

Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science

303: 1020–1023.
31. Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, et al. (1999) Intestinal

polyposis in mice with a dominant stable mutation of the beta-catenin gene.
Embo J 18: 5931–5942.

32. Kimelman D, Xu W (2006) beta-catenin destruction complex: insights and
questions from a structural perspective. Oncogene 25: 7482–7491.

33. Araki Y, Okamura S, Hussain SP, Nagashima M, He P, et al. (2003) Regulation

of cyclooxygenase-2 expression by the Wnt and ras pathways. Cancer Res 63:
728–734.

34. Lee HK, Jeong S (2006) Beta-Catenin stabilizes cyclooxygenase-2 mRNA by
interacting with AU-rich elements of 39-UTR. Nucleic Acids Res 34: 5705–

5714.

35. Tshori S, Gilon D, Beeri R, Nechushtan H, Kaluzhny D, et al. (2006)
Transcription factor MITF regulates cardiac growth and hypertrophy. The

Journal of clinical investigation 116: 2673–2681.
36. Yajima I, Belloir E, Bourgeois Y, Kumasaka M, Delmas V, et al. (2006)

Spatiotemporal gene control by the Cre-ERT2 system in melanocytes. Genesis
44: 34–43.

37. Delmas V, Beermann F, Martinozzi S, Carreira S, Ackermann J, et al. (2007)

Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a
expression and cooperates with N-Ras in melanoma development. Genes Dev

21: 2923–2935.
38. Quasnichka H, Slater SC, Beeching CA, Boehm M, Sala-Newby GB, et al.

(2006) Regulation of smooth muscle cell proliferation by beta-catenin/T-cell

factor signaling involves modulation of cyclin D1 and p21 expression. Circ Res
99: 1329–1337.

39. Cohen ED, Ihida-Stansbury K, Lu MM, Panettieri RA, Jones PL, et al. (2009)
Wnt signaling regulates smooth muscle precursor development in the mouse

lung via a tenascin C/PDGFR pathway. J Clin Invest 119: 2538–2549.
40. Levin MD, Lu MM, Petrenko NB, Hawkins BJ, Gupta TH, et al. (2009)

Melanocyte-like cells in the heart and pulmonary veins contribute to atrial

arrhythmia triggers. J Clin Invest 119: 3420–3436.
41. Heymann MA, Rudolph AM (1975) Control of the ductus arteriosus. Physiol

Rev 55: 62–78.
42. Coceani F, Olley PM (1973) The response of the ductus arteriosus to

prostaglandins. Can J Physiol Pharmacol 51: 220–225.

43. Echtler K, Stark K, Lorenz M, Kerstan S, Walch A, et al. (2010) Platelets
contribute to postnatal occlusion of the ductus arteriosus. Nature medicine 16:

75–82.

44. Miano JM, Cserjesi P, Ligon KL, Periasamy M, Olson EN (1994) Smooth

muscle myosin heavy chain exclusively marks the smooth muscle lineage during

mouse embryogenesis. Circulation research 75: 803–812.

45. Lincoln J, Lange AW, Yutzey KE (2006) Hearts and bones: shared regulatory

mechanisms in heart valve, cartilage, tendon, and bone development.

Developmental biology 294: 292–302.

46. Lei TC, Vieira WD, Hearing VJ (2002) In vitro migration of melanoblasts

requires matrix metalloproteinase-2: implications to vitiligo therapy by

photochemotherapy. Pigment cell research/sponsored by the European Society

for Pigment Cell Research and the International Pigment Cell Society 15: 426–

432.

47. Balani K, Brito FC, Kos L, Agarwal A (2009) Melanocyte pigmentation stiffens

murine cardiac tricuspid valve leaflet. Journal of the Royal Society, Interface/the

Royal Society 6: 1097–1102.

48. Miano JM, Georger MA, Rich A, De Mesy Bentley KL (2006) Ultrastructure of

zebrafish dorsal aortic cells. Zebrafish 3: 455–463.

49. Brault V, Moore R, Kutsch S, Ishibashi M, Rowitch DH, et al. (2001)

Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in

dramatic brain malformation and failure of craniofacial development.

Development 128: 1253–1264.

50. Guyonneau L, Rossier A, Richard C, Hummler E, Beermann F (2002)

Expression of cre recombinase in pigment cells. Pigment Cell Res 15: 305–309.

51. Colombo S, Petit V, Kumasaka M, Delmas V, Larue L (2007) Flanking genomic

region of Try::Cre mice, rapid genotyping for homozygous mice. Pigment Cell

Res 20: 305–306.

52. MacKenzie MA, Jordan SA, Budd PS, Jackson IJ (1997) Activation of the

receptor tyrosine kinase Kit is required for the proliferation of melanoblasts in

the mouse embryo. Dev Biol 192: 99–107.

53. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter

strain. Nat Genet 21: 70–71.

54. Hodgkinson CA, Moore KJ, Nakayama A, Steingrimsson E, Copeland NG,

et al. (1993) Mutations at the mouse microphthalmia locus are associated with

defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74:

395–404.

55. Puig I, Champeval D, De Santa Barbara P, Jaubert F, Lyonnet S, et al. (2009)

Deletion of Pten in the mouse enteric nervous system induces ganglioneur-

omatosis and mimics intestinal pseudoobstruction. J Clin Invest 119: 3586–3596.

56. Jaffre F, Callebert J, Sarre A, Etienne N, Nebigil CG, et al. (2004) Involvement

of the serotonin 5-HT2B receptor in cardiac hypertrophy linked to sympathetic

stimulation: control of interleukin-6, interleukin-1beta, and tumor necrosis

factor-alpha cytokine production by ventricular fibroblasts. Circulation 110:

969–974.

57. Choquet P, Calon A, Breton E, Beck F, Domon-Dell C, et al. (2007) Multiple-

contrast X-ray micro-CT visualization of colon malformations and tumours in

situ in living mice. C R Biol 330: 821–827.

Reduced Number of SMC and Closure of the DA

PLOS ONE | www.plosone.org 13 January 2013 | Volume 8 | Issue 1 | e53183


