1,179 research outputs found

    The Central Beam and Cycle Management of the CERN Accelerator Complex

    Get PDF
    The efficient exploitation of the CERN accelerator complex in the future, with new cycles to fill the LHC and possibly a dedicated neutrino cycle in addition to the actual fixed-target program, will require a rapid and coordinated response to adapt to the changing user requests. This paper reviews the general sequencing problem and describes some preliminary concepts and algorithms suitable for managing a network of accelerators. The benefits derived from the architecture that has already been implemented in the PS complex, since its start up in March, are presented. The last accelerator in the injector chain, the SPS, is currently running fixed super-cycles. Its event-based timing system will be integrated into the central control by the year 2001 in a way that is transparent to the SPS equipment

    Suppression of Rayleigh-Benard Convection with Proportional-Derivative Controller

    Get PDF
    We study theoretically (linear stability) and experimentally the use of proportional and derivative controllers to postpone the transition from the no-motion state to the convective state in a circular cylinder heated from below and cooled from above. The heating is provided with an array of individually controlled actuators whose power is adjusted in proportion to temperatures measured in the cylinder\u27s interior. As the proportional controller\u27s gain increases, so does the critical Rayleigh number for the onset of convection. Relatively large proportional controller gains lead to oscillatory convection. The oscillatory convection can be suppressed with the application of a derivative controller, allowing further increases in the critical Rayleigh number. The experimental observations are compared with theoretical predictions

    Optimizing passive acoustic sampling of bats in forests

    Get PDF
    Passive acoustic methods are increasingly used in biodiversity research and monitoring programs because they are cost-effective and permit the collection of large datasets. However, the accuracy of the results depends on the bioacoustic characteristics of the focal taxa and their habitat use. In particular, this applies to bats which exhibit distinct activity patterns in three-dimensionally structured habitats such as forests. We assessed the performance of 21 acoustic sampling schemes with three temporal sampling patterns and seven sampling designs. Acoustic sampling was performed in 32 forest plots, each containing three microhabitats: forest ground, canopy, and forest gap. We compared bat activity, species richness, and sampling effort using species accumulation curves fitted with the clench equation. In addition, we estimated the sampling costs to undertake the best sampling schemes. We recorded a total of 145,433 echolocation call sequences of 16 bat species. Our results indicated that to generate the best outcome, it was necessary to sample all three microhabitats of a given forest location simultaneously throughout the entire night. Sampling only the forest gaps and the forest ground simultaneously was the second best choice and proved to be a viable alternative when the number of available detectors is limited. When assessing bat species richness at the 1-km(2) scale, the implementation of these sampling schemes at three to four forest locations yielded highest labor cost-benefit ratios but increasing equipment costs. Our study illustrates that multiple passive acoustic sampling schemes require testing based on the target taxa and habitat complexity and should be performed with reference to cost-benefit ratios. Choosing a standardized and replicated sampling scheme is particularly important to optimize the level of precision in inventories, especially when rare or elusive species are expected

    Managing the Real-time Behaviour of a Particle Beam Factory: The CERN Proton Synchrotron Complex and its Timing System Principles

    Get PDF
    In the CERN 26 Gev Proton Synchrotron (PS) accelerator network, super-cycles are defined as sequences of different kinds of beams produced repetitively [Fig.1]. Each of these beams is characterised by attributes such as particle type, beam energy, its route through the accelerator network, and the final end user. The super-cycle is programmed by means of an editor through which the operational requirements of the physics programme can be described. Each beam in the normal sequence may later be replaced by a set of spare beams automatically depending on software and hardware interlocks and requests presented to the Master Timing Generator (MTG [Glos. 1]). The MTG calculates at run time how each beam is to be manufactured, and sends a telegram [Glos. 3] message to each accelerator, just before each cycle, describing what it should be doing now and during the next cycle. These messages, together with key machine timing events and clocks are encoded onto a timing distribution drop net where they are distributed around the PS complex to VME-standard timing reception TG8 [Glos. 8] modules which generate output pulses and VME bus interrupts for task synchronisation. The TG8 modules are able to use accelerator-related clocks such as the incremental/ decremental magnetic field trains, or the beam revolution and radio frequencies to produce high precision beam synchronous timing. Timing Surveillance Modules (TSM) monitor these timings, which give high precision interval measurements used for the machine tuning, beam diagnostics, and fault detection systems

    Gas Flow in Micr-Channels

    Get PDF
    An experimental and theoretical investigation of low Reynolds number, high subsonic Mach number, compressible gas flow in channels is presented. Nitrogen, helium, and argon gases were used. The channels were microfabricated on silicon wafers and were typically 100 μm wide, 104 μm long, and ranged in depth from 0.5 to 20 μm. The Knudsen number ranged from 10-3 to 0.4. The measured friction factor was in good agreement with theoretical predictions assuming isothermal, locally fully developed, first-order, slip flow

    A Variational Method for the Propagation of Spacecraft Relative Motion.

    Get PDF
    A new formulation of the spacecraft relative motion for a generic orbit is presented based on the orbital propagation method proposed by Peláez et al. in 2006 [1]. Two models have been developed. In the first model the method is applied to each spacecraft using a time synchronization of the system dynamical states. In the second model we employ a local orbital reference frame with a linearization of gravitational terms, apply the method to the formation center of mass and propagate the relative dynamics with respect to the center of mass reference orbit. The models are compared in terms of computational speed for the case of a bounded triangular formatio

    An Integration Testing Facility for the CERN Accelerator Controls System

    Get PDF
    A major effort has been invested in the design, development, and deployment of the LHC Control System. This large control system is made up of a set of core components and dependencies, which although tested individually, are often not able to be tested together on a system capable of representing the complete control system environment, including hardware. Furthermore this control system is being adapted and applied to CERN's whole accelerator complex, and in particular for the forthcoming renovation of the PS accelerators. To ensure quality is maintained as the system evolves, and toimprove defect prevention, the Controls Group launched a project to provide a dedicated facility for continuous, automated, integration testing of its core components to incorporate into its production process. We describe the project, initial lessons from its application, status, and future directions

    Selective dilution and magnetic properties of La_{0.7}Sr_{0.3}Mn_{1-x}M'_xO_3 (M' = Al, Ti)

    Full text link
    The magnetic lattice of mixed-valence Mn ions in La0.7_{0.7}Sr0.3_{0.3}MnO3_3 is selectively diluted by partial substitution of Mn by Al or Ti. The ferromagnetic transition temperature and the saturation moment decreases with substitution in both series. The volume fraction of the non-ferromagnetic phases evolves non-linearly with the substitution concentration and faster than theoretically expected. By presenting the data in terms of selective dilutions, the reduction of TcT_\mathrm{c} is found to be scaled by the relative ionic concentrations and is consistent with a prediction derived from molecular-field theory.Comment: 6 pages, 5 figures, REVTex4.0. Submitted to PR
    corecore