860 research outputs found

    Nanoarchitectonics of metal oxide materials for sustainable technologies and environmental applications

    Get PDF
    Sustainable development compliant with environment and human health protection motivates researchers to explore green solutions towards improved economic and social wellbeing. These objectives, still very far from being achieved especially in developing countries, must necessarily be pursued through the tailored fabrication of low-cost, eco-friendly, efficient and stable multi-functional materials. In particular, nanostructures based on first-row transition metal oxides are amenable candidates for clean energy production, air purification and self-cleaning/anti-fogging purposes, especially if obtained through fabrication strategies allowing a careful modulation of their characteristics. In this highlight, after a brief introduction of the above issues, we provide selected representative examples of green oxide-based nanoarchitectures for the targeted end-uses. Attention is focused on the interplay between the material chemico-physical properties and the resulting functional performances, with the aim of providing some hints to control material behavior by design. In addition, we provide a critical outlook not only on the unique opportunities, but also on the main open challenges related to the use of the above multi-functional materials, in an attempt to stimulate further advancements in these emerging research areas

    Molecular mediators of RNA loading into extracellular vesicles

    Get PDF
    In the last decade, an increasing number of studies have demonstrated that non-coding RNA (ncRNAs) cooperate in the gene regulatory networks with other biomolecules, including coding RNAs, DNAs and proteins. Among them, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are involved in transcriptional and translation regulation at different levels. Intriguingly, ncRNAs can be packed in vesicles, released in the extracellular space, and finally internalized by receiving cells, thus affecting gene expression also at distance. This review focuses on the mechanisms through which the ncRNAs can be selectively packaged into extracellular vesicles (EVs)

    Faulting, sediment loading, and flow of underlying ductile units : A case study from the Western Ionian Basin Offshore Eastern Sicily

    Get PDF
    Acknowledgements Bathymetric data are from a compilation provided by Gutscher et al. (2017) and from EMODnet open dataset (http://www.emodnet-bathymetry.eu/). Digital topography was achieved from the Japan Aerospace Exploration Agency (https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm). The authors also acknowledge the use of MOVE Software Suite granted by Petroleum Experts Limited (www.petex.com). Bernard Mercier de Lepinay (GeoAzur, Université de Nice/CNRS), is also acknowledged for the CIRCEE-HR seismic data processing. Juan I. Soto (The University of Texas at Austin) is warmly acknowledged for the critical and constructive discussions provided. The research was partly funded by the University of Catania in the framework of the project ‘SeismoFront’ (resp. G. Barreca), Grant n. 22722132176.Peer reviewedPostprin

    Antibody-drug conjugates for lymphoma patients: preclinical and clinical evidences

    Get PDF
    Antibody-drug conjugates (ADCs) are a recent, revolutionary approach for malignancies treatment, designed to provide superior efficacy and specific targeting of tumor cells, compared to systemic cytotoxic chemotherapy. Their structure combines highly potent anti-cancer drugs (payloads or warheads) and monoclonal antibodies (Abs), specific for a tumor-associated antigen, via a chemical linker. Because the sensitive targeting capabilities of monoclonal Abs allow the direct delivery of cytotoxic payloads to tumor cells, these agents leave healthy cells unharmed, reducing toxicity. Different ADCs have been approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of a wide range of malignant conditions, both as monotherapy and in combination with chemotherapy, including for lymphoma patients. Over 100 ADCs are under preclinical and clinical investigation worldwide. This paper provides an overview of approved and promising ADCs in clinical development for the treatment of lymphoma. Each component of the ADC design, their mechanism of action, and the highlights of their clinical development progress are discussed

    Electron transport through single Mn12 molecular magnets

    Full text link
    We report transport measurements through a single-molecule magnet, the Mn12 derivative [Mn12O12(O2C-C6H4-SAc)16(H2O)4], in a single-molecule transistor geometry. Thiol groups connect the molecule to gold electrodes that are fabricated by electromigration. Striking observations are regions of complete current suppression and excitations of negative differential conductance on the energy scale of the anisotropy barrier of the molecule. Transport calculations, taking into account the high-spin ground state and magnetic excitations of the molecule, reveal a blocking mechanism of the current involving non-degenerate spin multiplets.Comment: Accepted for Phys. Rev. Lett., 5 pages, 4 figure

    Expectations and outcomes when moving from open to laparoscopic adrenalectomy: Multivariate analysis

    Get PDF
    Various authors have suggested that laparoscopic adrenalectomy (LA) leads to better surgical outcomes than open surgery. The debate is still open, however, and indications and limitations of minimally invasive surgery have not been completely established. The objective of our study was to compare surgical outcomes of LA and open adrenalectomy (OA), using multivariate analysis to adjust for potential confounding factors (e.g., size of the lesion, histology). Between 1995 and June 2000 at "Careggi" Hospital in Florence, Italy patients with an indication for adrenalectomy were treated laparoscopically if the lesion was 2 hours, blood loss greater than or equal to 500 ml) between patients operated on through a traditional approach and those who underwent LA. On the other hand, patients operated on laparoscopically have a significantly higher probability than the OA group of experiencing a better recovery from surgery (i.e., require less postoperative analgesics and return to normal activities earlier). The results of the present study show that, although LA does not add much benefit in terms of expected intraoperative outcomes, it dramatically speeds patients' recovery from surgery. The two approaches are complementary and should both be integrated into the technical background of all endocrine surgeons

    Gold nanoparticles supported on functionalized silica as catalysts for alkyne hydroamination: A chemico-physical insight

    Get PDF
    Highly stable gold nanoparticles anchored on propynylcarbamate-functionalized silica (Au/SiO2@Yne) have been efficiently utilized for the heterogeneous hydroamination of phenylacetylene with aniline under different reaction conditions. In order to ascertain the eventual influence of surface silanol groups on the system activity and selectivity tailored modifications of Au/SiO2@Yne catalysts were pursued according to two different strategies, involving respectively functionalization with trimethylethoxysilane (Au/SiO2@Yne-TMS) or post-treatment with triethylamine (Au/SiO2@Yne-NEt3). The prepared materials were analysed by several complementary techniques such as Solid State NMR (SS NMR), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD). A comparison of the resulting catalytic activities with that of the pristine Au/SiO2@Yne revealed a significant improvement for Au/SiO2@Yne-NEt3 in terms of both conversion and selectivity. Recycling and stability studies showed a catalytic activity decrease after the first run, due to the formation of polyphenylacetylene (PPhA) oligomers shielding the active sites. PPhA removal by sonication in acetone fully restored the catalytic activity and empowered the system with a good operational stability, a very crucial issue in view of eventual practical applications

    On the Fragmentation of Ni(II) β-Diketonate-Diamine Complexes as Molecular Precursors for NiO Films: A Theoretical and Experimental Investigation

    Get PDF
    NiO-based nanomaterials have attracted considerable interest for different applications, which have stimulated the implementation of various synthetic approaches aimed at modulating their chemico-physical properties. In this regard, their bottom-up preparation starting from suitable precursors plays an important role, although a molecular-level insight into their reactivity remains an open issue to be properly tackled. In the present study, we focused on the fragmentation of Ni(II) diketonate-diamine adducts, of interest as vapor-phase precursors for Ni(II) oxide systems, by combining electrospray ionization mass spectrometry (ESI-MS) with multiple collisional experiments (ESI-MSn) and theoretical calculations. The outcomes of this investigation revealed common features in the fragmentation pattern of the target compounds: (i) in the first fragmentation, the three complexes yield analogous base-peak cations by losing a negatively charged diketonate moiety; in these cations, Ni-O and Ni-N interactions are stronger and the Ni positive charge is lower than in the parent neutral complexes; (ii) the tendency of ligand electronic charge to migrate towards Ni further increases in the subsequent fragmentation, leading to the formation of a tetracoordinated Ni environment featuring an interesting cation-pi intramolecular interaction
    corecore