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Abstract: In the last decade, an increasing number of studies have demonstrated that non-coding
RNA (ncRNAs) cooperate in the gene regulatory networks with other biomolecules, including coding
RNAs, DNAs and proteins. Among them, microRNAs (miRNAs), long non-coding RNAs (IncRNAs)
and circular RNAs (circRNAs) are involved in transcriptional and translation regulation at different
levels. Intriguingly, ncRNAs can be packed in vesicles, released in the extracellular space, and
finally internalized by receiving cells, thus affecting gene expression also at distance. This review
focuses on the mechanisms through which the ncRNAs can be selectively packaged into extracellular
vesicles (EVs).
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1. Introduction
1.1. Extracellular Vesicles (EVs)

EVs are a family of membrane-coated vesicles with different proteomic and lipidomic
profile, as well as different size.

In their study, Pan and Johnstone firstly described extracellular vesicles containing
the transferrin receptor during reticulocytes maturation [1]. In the beginning, the scientific
community thought that extracellular vesicles were containers of waste products of cellular
metabolism that the cell wanted to remove. Nowadays the role of EVs is emerging as
an important new area of biomedical research [2]. It is well known that EVs are actively
secreted by cells and that their content can affect activities and functions of receiving cells,
in physiological as well as in pathological conditions [3-5].

Due to their biogenesis, we can identify two different types of EVs: exosomes and
microvesicles (MV) [6]. The last ones originate by direct budding of the plasma membrane
with a rearrangement of the cytoskeleton [7]. On the contrary, the biogenesis and release of
exosomes is a multi-step process. In brief, it begins with the inward budding of the plasma
membrane to form the early endosome that, passing through the late endosome, maturates
to multivesicular bodies (MVBs) [8]. These incorporate, through the endosomal sorting
complexes required for transport (ESCRT), the intraluminal vesicles (ILs), which contain
different cytosolic components, including proteins and nucleic acids. After the fusion of
the MVBs with cell membrane, the ILs are released outside the cells as exosomes [9,10].

The different biogenesis of the EVs also affects the composition of the vesicles’ mem-
brane. The invagination process of ILs determines a specific lipidic and protein composition
of the exosome’s membranes, which gives them a distinctive molecular profile. Exosomes’
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membranes contain ESCRT components and associated proteins, as TSG101 and Alix. More-
over, the participation of tetraspanins in exosomes formation determines an abundance of
these proteins in the exo-membranes [11].

MYV as shed directly from the plasma membrane, hold the annexin A1l [12] and are
enriched in specific phospholipids such as phosphatidylserine (PS), which promotes uptake
by recipient cells, or sphingolipids as well as ceramide and cholesterol, that allow MV
formation [13].

Finally, EVs are characterized by their size; generally, microvesicles range from 200 to
2000 nm while exosomes from 30 to 150/200 nm. Recently the ISEV society established
that it is better to prefer other methods of classification because many vesicles are quite
similar in size range [14,15].

Many studies have focused on the biological effects of EVs in cell-cell communication
both between neighboring cells and between cells in distant body districts. Biological fluids
carry the EVs released in the extracellular space until they find a landing place where dump
their content through the fusion of plasma membranes or endocytosis [16]. Recently, a great
number of data support the transport of ncRNAs among cells, demonstrating that they
can exert special functional roles [17]. This review aims to shed light and collect the latest
published data about the mechanisms of RNA-loading in extracellular vesicles. To this
end, we searched for papers indexed on the PubMed database by combining the following
keywords: non-coding RNAs, EVs, and RNA-loading. The time limit was set from 2015
to date, however, we listed a few older documents since noteworthy as pioneering works.
Among the emerged manuscripts, we summarized here those providing molecular and
functional data on the RNA loading.

1.2. RNA Families in Extracellular Vesicles

Much of the recent interest in EVs was triggered by the discovery of their involvement
in horizontal transfer of secreted extracellular RN A (exRNA). From the first evidence of
functional mRNA in EVs, a huge number of studies revealed a significant assortment of
ncRNAs in EVs. The deep sequencing RNA technique allows demonstrating a selective en-
richment of small ncRNAs in human-derived extracellular vesicles, isolated from different
cytotypes [18,19]. Among them, small RNA families are the most abundant, these include
small nuclear RN As, small nucleolar RNAs, ribosomal RNAs, transfer RNAs, miRNAs.
However, also larger RNAs groups, including mitochondrial RNAs, Y RNA, vault RNA,
piwi RNA and long non-coding RNA have been found in EVs, for a detailed review of the
different RN As families in EV see [20]. A recent work of Mosbach et al. demonstrated that
RNA sorting depends on its size but also on its origin, the authors in fact revealed that
RNA polymerase III transcripts are preferentially associated with EVs [21].

As pointed out by [20] although several types of RNAs have been identified in EVs,
only some of these have been demonstrated functioning in the recipient cell, i.e., miRNAs
and IncRNAs. For other RNA molecules, such as tRNAs, can be assumed a possible activity
in the cytoplasm of the recipient cells while the role of other RNA molecules such as mRNA
fragments or ribosomal RNAs remains unclear (Figure 1).

Still controversial is the presence of miRNA precursors: their identification, together
with Dicer and Argonaute 2, let scientists to suppose that complete silencing machinery
could be transferred by EVs [22,23]. However, the hypothesis was not largely confirmed by
other investigators.

Other conflicting observations in studying exRNAs are due to the different isolation
strategies. For example, ultracentrifugation, the gold standard method for EVs purification,
biases RNAs data. It in fact does not allow to separate vesicles from free ribonucleoproteins
or lipoproteins both associated with RNAs [24].
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Figure 1. RNAs species into EVs and their functions. RNAs in extracellular vesicles can be classified
into three types: (1) RNAs that have known function when internalized into target cells, such as
mRNAs, miRNAs and IncRNAs; (2) RNAs that are predicted to be functional (for example, tRNAs,
YRNAs, circRNAs); (3) RNAs with unknown functions (for example, fragments RNAs and rRNAs),
some of which may be functional, but others may be non-functional degradation products.

To overcome this limitation, Lédsser group developed a method combining size exclu-
sion chromatography with a density cushion; this allows to isolate and characterize EVs
from blood with minimal contamination by plasma proteins and lipoprotein particles [25].

Meanwhile, Jeppesen et al. used high-resolution density gradient fractionation to
separate EVs from non-vesicular material, then, with a direct immunoaffinity capture (DIC)
targeting classical exosomal tetraspanins, exosomes were specifically isolated from other
types of EVs [12]. Nucleic acid analysis revealed that exRNAs are differentially expressed
between EVs and non-vesicle compartments. Interestingly the authors demonstrated that
miRNAs were mainly associated with extracellular non-vesicular fractions while the EVs
were enriched in transfer RNA (tRNA) fragments. In addition, YRNA and vault RNA were
particularly enriched in non-vesicular fractions [12].

New isolation techniques have allowed more accurate identification of the RNA fami-
lies transported through the EVs, further confirming the role of vesicles in the horizontal
transfer of this nucleic acid.

2. The Effects of the Horizontal Transfer of EVs Derived RNAs

Many studies demonstrated the functional role of the RNA-cargo that, selectively
packaged inside EVs, are transferred to target cells. Firstly, the transfer of exosomal
mRNAs and miRNAs was reported by Valadi et al. in 2007, which revealed a “novel
mechanism of genetic exchange between cells” [26]. Since that study, numerous papers
have demonstrated that the horizontal transfer of exosomes cargo can modulate target
cells behaviors.

Studies on tumor cells revealed as exosome-mediated RNA transfer may control tumor
growth, affect its microenvironment, and promote metastases.

It is well known that a central event in tumor progression is the induction of angio-
genesis. Focusing on this pathway it has been demonstrated that glioblastoma, chronic
myelogenous leukemia, and breast cancer derived EVs can reprogram endothelial cells
through horizontal transfer of their miRNAs cargo [27,28].



Cells 2021, 10, 3355

4 of 14

The involvement of cancer derived EVs in facilitating brain infiltration is worth
mentioning. Lu and collaborators have recently demonstrated that exosomes derived
by highly brain metastatic breast cancer cells are able to destroy the blood-brain barrier
through its IncRNA GS51-600G8.5 [29,30].

Exosomal miRNAs have a role also in tumor drug resistance. Mao et al. support this
hypothesis demonstrating that Adriamycin-resistant breast cancer cells deliver specific
miRNAs through exosomes thus promoting drug resistance in neighboring cells [31]. Quin
and collaborators demonstrated that exosomes derived from cisplatin-resistant lung cancer
cell line A549 induce drug resistance in receiving cells. MiRNA profile identified the
miR100-5p as the mediator of this process [32].

In addition, exosome-transported IncRNAs may participate in drug resistance in-
duction. A recent paper by Wang et al. proved that the exosome-mediated transfer of
IncRNA H19 induces doxorubicin resistance in breast cancer [33]. The authors showed
that drug-resistant cells release exosomes enriched in IncH19; these exosomes increase the
chemoresistance of doxorubicin once internalized by sensitive cells. Moreover, downreg-
ulation of H19 in sensitive cells ablated this effect thus confirming the direct role of the
long non-coding RNA [33]. EVs released into the tumor microenvironment strongly affect
metastatic niche. For example, the prometastatic miRNA miR-9 and miR-155, carried respec-
tively by breast cancer derived exosomes and pancreatic cancer derived microvesicles, are
able to reprogram fibroblast to cancer associated fibroblast (CAF) phenotype thus promot-
ing tumor progression [34,35]. While the EV-mediated delivery of the miR-105 and -miR-122
reprogram CAFs metabolism to sustain tumor growth [36,37]. Moreover, cancer derived
EVs can reprogram immune cells thus preventing immunosurveillance and promoting
immunotolerance in cancer microenvironment, as revised by Graner [38]. In addition, EVs
derived RNAs profiling can be useful as a prognostic indicator to therapeutic response.
For example, miR196a-5p and miR-501-3p were significantly downregulated in exosomes
isolated from the urine of prostate cancer patients [39], while let7-b and miR-18a, isolated
from plasma of multiple myeloma patients, were associated with overall survival [40]. As
expected, the effects of the EV-transported RNA are not limited to the tumor context.

Barile and colleagues revealed the cardioprotective role of the different miRNAs
transported by EVs derived from cardiac progenitor cells (CPC). They demonstrated that
miR-210 inhibits cardiomyocyte apoptosis by targeting Ephrin A3 (cell surface GPI-bound
ligand for Eph receptors) and PTP1b (protein-tyrosine phosphatase 1b). Moreover, EVs
derived miR132 stimulates angiogenesis acting on RasGAP-p120, Ras GTPase activating
protein p120 [41]. Furthermore, CPC derived exosomal miR21 exert similar effects pre-
venting cell apoptosis by targeting PDCD4 (Programmed Cell Death 4) [42]. Similarly,
Gray and collaborators, through microarray analysis of exosomes derived from hypoxic
CPC, identified 11 miRNAs that improve cardiac function stimulating tube formation of
endothelial cells and reducing fibrosis [43].

Regarding differentiation, it has been demonstrated that exosomes released from
Neural stem/progenitor cells (NPCs) have an important role in neurogenesis; Ma and
collaborators demonstrated that mouse cortical NPCs, isolated from fetal brain, promote
neuronal differentiation through exosomal miR-21a [44].

Adipose tissue is an excellent resource for circulating exosomal miRNAs that have a
role in regulating liver gene expression, as well as affecting obesity or diabetes. Adipose-
derived exosomal miR-99b has been demonstrated to control in vivo fibroblast growth
factor 21 (FGF21) production [45]. While exosomes secreted by adipose tissue macrophages
transfer miRNAs modulating, in vivo and in vitro, insulin sensitivity and glucose home-
ostasis [46].

All these experiments suggest that exosomes may be a vehicle of therapeutic non-
coding RNAs in physiological and pathological conditions as well as in the field of regen-
erative therapy (Figure 2) (Table 1). To this end, a comprehensive analysis of the RNA
loading mechanisms is appropriate.
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Figure 2. Extracellular vesicles release and their functional effects on target cells. EVs are a heterogeneous population, both
in form and content since their cargo is strictly dependent on the pathophysiological conditions of the cell at the exact
moment in which it produces the vesicle. When studying the complexity of the EV-mediated cell-cell communication, it is
necessary to evaluate that the same vesicle, i.e., the same message, can be interpreted differently depending on the cytotype
that receives it. This will depend in good part on the gene expression profile of the recipient cell.

Table 1. Functional effects of ncRNAs shuttled by extracellular vesicles.

EVs Derived
ncRNAs

Donor Cells/Tissues
or Biofluids

Target Cell/Tissues
or In Vivo Model

Effect

References

miR-20a, miR-23a,
miR-24, miR-149
and miR-222

Drug-resistant breast
cancer cells variant
(MCEFE-7/Adr)

Drug-sensitive human
breast cancer (MCF-7/S)

Promote drug resistance

[31]

miR-100-5p

Cisplatin resistant lung
cancer cells (A549/DDP)

A549 lung cancer cells
and tumor tissues of
BABL/c athymic
nude mice

Induces drug resistance

(32]

IncRNA H19

MCE-7/DOX and
MDA-MB-231/DOX
(DOX-resistant breast

cancer cells)

MCEF-7 and
MDA-MB-231 (Sensitive
breast cancer cells)

Induces drug resistance

[33]

miR-9

Breast cancer cells
(MDA-MB-231 and
MDA-MB-468)

Human breast
Fibroblasts (NFs)

Promotes tumor progression by
inducing properties similar to the
CAF phenotype

[34]

miR-155

Pancreatic cancer cell
lines (BxPC-3 and
SW1990)

Primary pancreatic
fibroblasts from wild
type C57 mice

Reprograms the phenotype of
normal fibroblasts in CAF

[35]

miR-105

Breast cancer cells
(MDA-MB-231)

Patient-derived primary
fibroblasts (CAF265922)

Reprograms the metabolism of
CAFs to support tumor growth

[36]

miR-122

Breast cancer cells
(MDA-MB-231)

Mouse primary
lung fibroblasts

Reprograms glucose metabolism
in the premetastatic niche to
promote metastasis. Predictive
marker and possible therapeutic
target for metastatic BC

[37]
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Table 1. Cont.

EVs Derived Donor Cells/Tissues Target Cell/Tissues Effect References
ncRNAs or Biofluids or In Vivo Model
miR196a-5p and Urinary exosomes from Non-invasive prognostic
. prostate cancer patients . [39]
miR-501-3p (Pca) biomarkers for prostate cancer
Exosomes from plasma Predictors of progression-free
let7-b and miR-18a of multiple myeloma survival (PFS) and overall survival [40]
patients (MM) (OS) in patients with MM
. Mouse cardiomyocytic Cardioprotective role, inhibits
miR-210 CPCs cells (HL-1) cardiomyocyte apoptosis [41]
Anti-apoptotic and pro-angiogenic
miR-132 CPCs HUVECs role, enhancing tube formation [41]
ability of endothelial cells
miR-21 CPCs HO9C2 (human Anti-apoptotic role, preventing [42]
cardiomyocytic cells) apoptosis of cardiomyocytes
miR-15b, miR-17, Rag?gj;}slcﬁﬁlac Pro-regenerative role;,—promote
miR-20a, miR-103, CPCs in hypoxic endothelial cells (CECs) cardiac function by stimulating [43]
miR-199a, miR-210 conditions . tube formation of the endothelial
! and rat cardiac S .
and miR-292 . cell and reducing fibrosis
fibroblasts
miR-21a NPCs NPCs Promotes neurogenesis and [44]
neuronal differentiation
Increases in vivo hepatic
miR-99b Adipose tissue Distant tissues FGF21 expression [45]
Increase glucose tolerance
miR-155 ATrlr\l/;scl(f?)f)l}?ac;:s;lisriue Obese insulin Modulation of insulin sensitivity [46]

leads mice

resistant mice

and glucose homeostasis

3. Loading of EVs and Cargo Sorting
3.1. RNA Binding Protein-Mediated Loading

Recent evidence highlighted the main role of RNA-binding proteins in RNA sorting
and loading in EVs. Santangelo et al. have identified the RNA binding protein SYNCRIP
(synaptotagmin-binding cytoplasmic RNA-interacting protein; also known as hnRNPQ
or NSAP1) as a component of the hepatocyte exosomal miRNA sorting machinery. They
showed that SYNCRIP knockdown impairs the internalization of miRNAs in exosomes [47].
Subsequently, Hobor et al., identified that SYNCRIP contains a sequence called NURR
(N-terminal unit for RNA recognition) that recognizes and bind the motif GGCU/A in
miRNAs. This interaction guides miRNA loading into exosomes [48].

Recently, Temoche-Diaz and collaborators showed that the metastatic breast cancer
cell line MDA-MB-231 releases two sub-populations of EVs, called vesicular low density
(vLD) and vesicular high density (vHD) EVs. Mass spectrometry analysis revealed that
CD63, known as an exosomal marker, was enriched in the vHD subpopulation, as well as
other endosome-associated proteins. MiRNA analysis identified five miRNAs that were
enriched in vHD vesicles and not in VLD ones, thus suggesting that there is a specific
mechanism of miRNA sorting for the vHHD subpopulation [49]. Interestingly, miR-122,
a well-known prognostic biomarker for metastasis in breast cancer patients [50,51] was
identified. The authors demonstrated that the RNA binding protein Lupus La drives the
selective miR-122 vHD enrichment in breast cancer cell lines [49].

RNA binding proteins not only promote RNA loading but also contribute to RNA
function into target cells. Chen et al. studying bladder cancer metastatization identified
an exosomal IncRNA, termed lymph node metastasis-associated transcript 2 (LNMAT?2)
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that promotes lymphangiogenesis. Interestingly, they found that LNMAT2 was loaded into
exosomes by the heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1). The
complex LNMAT2/hnRNPA2B1, once in receiving cells, can migrate into the nucleus and
interact with PROX1 promoter. Here HNRNPA2B1 mediates H3 lysine 4 trimethylation
(H3K4me3) and subsequent activation of PROX1 which, in turn, regulates endothelial cell
differentiation and metastatic dissemination [52].

Often post-translational modifications of RNA binding proteins, such as SUMOy-
lation, phosphorylation or glycosylation, contribute to regulating exosome loading and
release [53,54].

Regarding non-coding RNAs loading, the sumoylation of heterogeneous nuclear
ribonucleoproteins (HNRNPs) is one of the proposed mechanisms. HNRNPA1, after
sumoylation, recognizes the long non-coding RNA ELNAT1 thus mediating its packaging
into EVs [55]. While HNRNPA2B1, after sumoylation, binds miRNAs recognizing the
EXOmotif GGAG (conserved motifs that allow the specific miRNAs sorting into exosomes)
and this interaction is responsible for miRNAs loading into exosomes [56].

The ribonucleoprotein HNRNPA2B1, again, through GlcNAcylation, can regulate
the internalization of specific miRNAs into EVs. Recently, Lee and collaborators demon-
strated that Caveolinl (CAV1), after its tyrosine phosphorylation (Y14), interacts with
HNRNPA2B1, promoting HNRNPA2B1 O-GlcNAcylation on two serine domains. This
modified complex directly controls the packaging of specific miRNAs into EVs [57]. An-
other study by McKenzie and colleagues highlighted that Ago2 phosphorylation could
control loading of miRNAs in exosomes [58].

In a recent work, Robinson and coworkers have identified HNRNPK as a CAV1-
regulated microRNA binding protein. They observed that CAV1 drives HNRPNK local-
ization to MVB, which brings the miRNA containing the AsUGnA motif. Moreover, they
found that membrane-rafts take part in this transport [59]. Export of miRNAs into exo-
somes and their subsequent release, in fact, can occur also through a lipid rafts dependent
mechanism, as discussed later.

Again, HNRNPK participates in EVs loading and secretion of non-coding RNAs,
through an alternative pathway mediated by LC3-conjugation machinery and called
LDELS, LC3 dependent EV loading and secretion [60].

Leidal et al. demonstrated that lipidated LC3-II is involved in the loading of specific
proteins into intraluminal vesicles (ILVs) for their subsequent release as EVs. Interestingly
the process is distinct from classical macroautophagy /autophagy because it requires com-
ponents of the LC3 conjugation machinery, but not other ATGs involved in autophagosome
formation. By proteomic analyses of LC3-conjugated protein obtained from secretome, the
authors demonstrated that 33% of identified proteins have been previously associated with
EVs. Moreover, after sucrose density gradient purification, they found that endogenous
LC3-II co-fractionated with well-defined EV markers. This result further confirms the
presence of LC3-II residues inside the lumen of EVs. Through different knock out models,
the authors identified several RNA binding proteins that require LC3 to be internalized in
EVs, among these the HNRNPK and scaffold-attachment Factor B (SAFB). Interestingly
the deficiency in LC3-conjugation machinery affects the amounts of RNA loaded in EV.
In particular, snoRNAs and miRNAs were reduced with an increase in tRNAs while no
effects were found in large RNA levels [60].

New evidence from Arabidopsis proteomic analysis revealed that also plant- derived
EVs contain several RNA-binding proteins, as Argonaute 1 (AGO1) and RNA helicases
(RHs). These proteins selectively associate with EV-enriched small RNAs, thus suggesting
their involvement in specific loading of sSRNAs into EVs also in plants [61].

In conclusion, several RNA binding proteins, alone or in combination with other
molecular interactors may control RNA sorting inside EV (Figure 3).
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Figure 3. Summary of proteins involved in the ncRNA packaging into EVs. RNA binding proteins
alone or in cooperation with other proteins bind specific ncRNAs and selectively transport them into
EVs. Membrane proteins are also involved in the ncRNA loading EVs mechanism.

3.2. Other Carriers for RNA Loading

It is well known that the ESCRT pathway is responsible for protein sorting into
EVs [62,63].

Alix is an adaptor protein involved in EVs biogenesis and cargo sorting through an
ESCRT dependent pathway [64]. However, new evidence indicated that Alix is involved in
miRNAs loading into EVs. Co-immunoprecipitation experiments revealed a direct inter-
action between Alix and the RNA binding protein Ago2, commonly involved in miRNA
transport and processing. This complex drives Alix with Ago2-associated miRNAs into
EVs [65,66]. A further connection between ESCRT complex and selective RNA loading
was confirmed by Wozniak et al. [67]. In particular, the authors demonstrated that the
RBP fragile X mental retardation 1 (FMR1) interacts with the hepatocyte growth factor-
regulated tyrosine kinase substrate (Hrs), a component of the ESCRT complex. The RNA
binding protein FMR1 acts as a chaperone that recognizes a specific sequence in miRNA
(AAUGC) while Hrs allows complex internalization. Interestingly, inflammosome activa-
tion mediates this interaction, through the cleavage of the trafficking adaptor protein RILP
(Rab-interacting lysosomal protein) that works as ride [67].

Cargo sorting could also be driven via ESCRT-independent pathways, e.g., through
the neutral sphingomyelinase, phospholipase or other lipids and associated protein such
as tetraspanin [9,10,60,68].

Janas et al. have proposed that the RNA loading into exosomes could be mediated by
the direct interaction between RNAs and the lipid raft of MVB membrane [69]. Moreover,
in their recent studies, through bioinformatic analysis, they identified four raft RNA motifs
that are frequent in the exosomal pro-tumoral miRNAs transferred from cancer cells to
immune cells [70].

Other recent evidence suggests that neutral sphingomyelinase 2 (nSMase 2), via
ceramide production, regulates EVs cargo loading. Kosaka and coworkers demonstrated
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that nSMase2 promotes the miR-210 packaging in EVs that finally affect the initiation of
metastatic process through the induction of angiogenesis [71]. Cha et al. compared small
RNAs from isogenic cell lines, that differ only in KRAS status, to demonstrate a KRAS
dependent sorting of miRNAs into EVs. In mutant KRAS-derived EVs authors showed
enrichment of tumor-suppressive miR-100 while the oncomiR miR-10b was preferentially
secreted in EVs derived from wild type KRAS cell line; these data demonstrate a key role
for KRAS in orchestrating RNA trafficking. Interestingly nSMase?2 is the mediator of this
mechanism since its inhibition caused the miR-100 confinement in KRAS mutated cells [72].

Sphingomyelinase takes part also in the transport of viral RNA mediated by EVs.
Zhou et al. demonstrated that ZIKA viruses, which infection induces severe neurological
manifestations, use exosomes as mediators of viral transmission between neurons. The
authors demonstrated that cortical neuronal cell-derived exosomes contain ZIKA virus
RNAs and proteins and that the treatment with GW4869, nSMase-2/SMPD3 specific
inhibitor, significantly reduced the loading of viral molecules. Interestingly, viral RNA
positively participates in transmission promoting in neuronal cells the expression and
activity of the nSMase-2 [73].

Finally, it has to consider the possibility that the RNAs are not passively loaded into the
exosomes but may themselves participate in vesicle formation. This is the case of IncRNA
plasmacytoma variant translocation 1 (PVT1) that, highly expressed in several cancers
including pancreatic cancer, promotes exosome secretion [74]. Sun et al. demonstrated
that PVT1 promotes the docking of MVBs by altering RAB7 expression and localization.
Moreover, PVT1 promotes the palmitoylation of the v-SNARE homolog YKT6 and its
colocalization with vesicle-associated membrane protein 3 (VAMP3) thus determining the
fusion of MVBs with the plasma membrane. The involvement of IncRNA in exosomes
formation or release let also suppose a direct role of these molecules in transporting other
smaller RNAs.

In conclusion, cargo sorting could be mediated by carriers commonly involved in
EV biogenesis or in miRNA transport and processing. Cargo sorting could also be driven
via ESCRT dependent or via ESCRT-independent pathways, e.g., through the neutral
sphingomyelinase, phospholipase or other lipids and associated proteins (Figure 2).

3.3. Engeneering Vesicles for RNA Loading

Several characteristics of EVs make them an interesting candidate for RNA delivery.
EVs in fact can cross biological barriers, avoid toxicity and immunogenicity, and have an
endogenous targeting ability. However, not all EVs show the same properties.

A recent paper by Murphy et al. formally demonstrated that EVs possess higher
RNA delivery efficiency than synthetic RNA delivery systems, used for clinical delivery of
siRNAs [75]. To evaluate the efficiency of transported RNAs, the authors developed the
CRISPR Operated Stoplight System for Functional Intercellular RNA Exchange (CROSS-
FIRE) reporter system that can be activated only by the functional transfer of a specific
single-guide RNA (sgRNA). Interestingly, comparing the sgRNA-delivery among EVs
and synthetic systems the authors confirmed the highest efficiency of EVs. Moreover,
comparative analyses among EVs from different cell lines highlighted the divergence in
the efficiency of encapsulating RNA by up to 30 times [75].

Several groups are developing engineering strategies to facilitate loading to develop
systemic delivery of siRNA or miRNA by EVs. The ultra-thermostable pPRNA-3W] core has
been used in many applications including gene therapy, target specific delivery, controlled
drug release, and image-guided diagnostics [76]. Recently Pi et al. demonstrated that the
arrow-shaped pRNA-3W] offers the opportunity to control either partial loading of RNA
into EVs or decoration of ligands on the surface of EVs. With cholesterol placed on the
arrow-tail of the 3W]J, in fact, the RNA is mainly located on the surface of the EVs, while,
placing the cholesterol at the arrowhead resulted in partial loading of RNA nanoparticles
into the extracellular vesicles [77].
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Specific loading of miRNA or siRNA in EVs has been performed through overex-
pression of the interested RNA in EV producing cells; however, recently the manuscript
of Sork et al. demonstrated this strategy as a “wasteful way of loading miRNA to EVs”.
The authors transiently overexpressed two different pri-miRNAs in HEK293-T cells and
quantified the respective mature miRNA levels in the EV and non-EV portion separated
by size-exclusion chromatography. The analysis revealed that most overexpressed mature
transcripts were secreted in the non-EV fraction, whereas the EV fraction contained <2% of
the respective miRNAs [78].

The new generation of loading techniques uses RNA binding proteins to guide the
internalization of specific RNA sequences. Kojima et al. [79] among EXOtic devices able to
boost exosome production and application, developed a specific RNA packaging system
using the archaeal ribosomal protein L7Ae which binds to the C/D box RNA structure.
They conjugated L7Ae to the C-terminus of CD63, thus allowing its localization on the
exosomal membrane, and inserted a C/D box into the 3'-untranslated region (3'-UTR) of
the reporter gene [79].

Wang et al. took advantage of the use of the transactivator of transcription (Tat)
protein, which binds specifically to the stem-loop-containing trans-activating response
(TAR) element RNA. They added TAR directly to the 5" end of a cargo mRNA and fused
Tat peptide directly to the C-terminus of ARRDCI, the Arrestin domain containing protein
1[80].

Despite numerous attempts to engineer vesicles with specific RNAs, the major limita-
tion is still the partial knowledge of the sorting and loading mechanisms in nature.

4. Conclusions

Recent investigations have shown the central role of ncRNAs in gene regulation at
different levels, including the ‘remote’ regulation mediated by EVs.

Here we summarized the newest studies describing the RNA binding proteins and
other interactors controlling the RNA sorting inside EVs. However, many aspects of
RNA trafficking need to be further investigated. Moreover, it remains unclear why cells
selectively load specific RNAs into subclasses of extracellular vesicles unless we still want
to convince ourselves that it is only a strategy for discarding excess materials.

Detailed knowledge of the loading mechanisms may point towards the wider use of
EVs as diagnostic and prognostic tools. Moreover, it can provide essential indications for
enhancing the use of EVs as drug delivery systems.
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