182 research outputs found

    The Calar Alto Legacy Integral Field Area Survey: extended and remastered data release

    Full text link
    This paper describes the extended data release of the Calar Alto Legacy Integral Field Area (CALIFA) survey (eDR). It comprises science-grade quality data for 895 galaxies obtained with the PMAS/PPak instrument at the 3.5 m telescope at the Calar Alto Observatory along the last 12 years, using the V500 setup (3700-7500{\AA}, 6{\AA}/FWHM) and the CALIFA observing strategy. It includes galaxies of any morphological type, star-formation stage, a wide range of stellar masses (\sim107^7 1012^{12} Msun ), at an average redshift of \sim0.015 (90\% within 0.005<<z<<0.05). Primarily selected based on the projected size and apparent magnitude, we demonstrate that it can be volume corrected resulting in a statistically limited but representative sample of the population of galaxies in the nearby Universe. All the data were homogeneous re-reduced, introducing a set of modifications to the previous reduction. The most relevant is the development and implementation of a new cube-reconstruction algorithm that provides with an (almost) seeing-limited spatial resolution (FWHM PSF \sim1.0").To illustrate the usability and quality of the data, we extracted two aperture spectra for each galaxy (central 1.5" and fully integrated), and analyze them using pyFIT3D. We obtain a set of observational and physical properties of both the stellar populations and the ionized gas, that have been compared for the two apertures, exploring their distributions as a function of the stellar masses and morphologies of the galaxies, comparing with recent results in the literature. DATA RELEASE: http://ifs.astroscu. unam.mx/CALIFA_WEB/public_html/Comment: 30 pages, 26 figures, accepted for publishing in the MNRA

    The local and global relations between Σ\Sigma_\star , ΣSFR\Sigma_{\rm SFR} and Σmol\Sigma_{\rm mol} that regulate star-formation

    Full text link
    Star-formation is one of the main processes that shape galaxies, defining its stellar population and metallicity production and enrichment. It is nowadays known that this process is ruled by a set of relations that connect three parameters: the molecular gas mass, the stellar mass and the star-formation rate itself. These relations are fulfilled at a wide range of scales in galaxies, from galaxy wide to kpc-scales. At which scales they are broken, and how universal they are (i.e., if they change at different scales or for different galaxy types) it is still an open question. We explore here how those relations compare at different scales using as proxy the new analysis done using Integral Field Spectroscopy data and CO observations data from the EDGE-CALIFA survey and the AMUSSING++ compilation.Comment: 8 pages, 3 figures, 1 table, proceedings of the IAU Symposium 373: Resolving the Rise and Fall of Star Formation in Galaxie

    The WHaD diagram: Classifying the ionizing source with one single emission line

    Full text link
    The usual approach to classify the ionizing source using optical spectroscopy is based on the use of diagnostic diagrams that compares the relative strength of pairs of collisitional metallic lines (e.g., [O iii] and [N ii]) with respect to recombination hydrogen lines (e.g., H{\beta} and H{\alpha}). Despite of being accepted as the standard procedure, it present known problems, including confusion regimes and/or limitations related to the required signal-to-noise of the involved emission lines. These problems affect not only our intrinsic understanding of inter-stellar medium and its poroperties, but also fundamental galaxy properties, such as the star-formation rate and the oxygen abundance, and key questions just as the fraction of active galactic nuclei, among several others. We explore the existing alternatives in the literature to minimize the confusion among different ionizing sources and proposed a new simple diagram that uses the equivalent width and the velocity dispersion from one single emission line, H{\alpha}, to classify the ionizing sources. We use aperture limited and spatial resolved spectroscopic data in the nearby Universe (z{\sim}0.01) to demonstrate that the new diagram, that we called WHaD, segregates the different ionizing sources in a more efficient way that previously adopted procedures. A new set of regions are defined in this diagram to select betweeen different ionizing sources. The new proposed diagram is well placed to determine the ionizing source when only H{\alpha} is available, or when the signal-to-noise of the emission lines involved in the classical diagnostic diagrams (e.g., H{\beta}).Comment: 10 pages, 5 figures, accepted for publishing in A&

    HII regions in the CALIFA survey: I. Catalog presentation

    Get PDF
    We present a new catalogue of H II regions based on the integral field spectroscopy (IFS) data of the extended CALIFA and PISCO samples. The selection of H II regions was based on two assumptions: a clumpy structure with high contrast of H α emission and an underlying stellar population comprising young stars. The catalogue provides the spectroscopic information of 26 408 individual regions corresponding to 924 galaxies, including the flux intensities and equivalent widths of 51 emission lines covering the wavelength range between 3745 and 7200 Å. To our knowledge, this is the largest catalogue of spectroscopic properties of H II regions. We explore a new approach to decontaminate the emission lines from diffuse ionized gas contribution. This diffuse gas correction was estimated to correct every emission line within the considered spectral range. With the catalogue of H II regions corrected, new demarcation lines are proposed for the classical diagnostic diagrams. Finally, we study the properties of the underlying stellar populations of the H II regions. It was found that there is a direct relationship between the ionization conditions on the nebulae and the properties of stellar populations besides the physicals condition on the ionized regions.Fil: Espinosa Ponce, Carlos. Universidad Nacional Autónoma de México; MéxicoFil: Sánchez, S. F.. Universidad Nacional Autónoma de México; MéxicoFil: Morisset, C.. Universidad Nacional Autónoma de México; MéxicoFil: Barrera Ballesteros, J. K.. Universidad Nacional Autónoma de México; MéxicoFil: Galbany, Lluís. Universidad de Granada; EspañaFil: García Benito, Rubén. Instituto de Astrofísica de Andalucía; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Lacerda, E. A. D.. Universidad Nacional Autónoma de México; MéxicoFil: Mast, Damian. Archivo del Observatorio Astronomico de Cordoba ; Observatorio Astronomico de Cordoba ; Rectorado ; Universidad Nacional de Cordoba; . Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin
    corecore