19,193 research outputs found
Cauchy problem for the Boltzmann-BGK model near a global Maxwellian
In this paper, we are interested in the Cauchy problem for the Boltzmann-BGK
model for a general class of collision frequencies. We prove that the
Boltzmann-BGK model linearized around a global Maxwellian admits a unique
global smooth solution if the initial perturbation is sufficiently small in a
high order energy norm. We also establish an asymptotic decay estimate and
uniform -stability for nonlinear perturbations.Comment: 26 page
Extending the Real-Time Maude Semantics of Ptolemy to Hierarchical DE Models
This paper extends our Real-Time Maude formalization of the semantics of flat
Ptolemy II discrete-event (DE) models to hierarchical models, including modal
models. This is a challenging task that requires combining synchronous
fixed-point computations with hierarchical structure. The synthesis of a
Real-Time Maude verification model from a Ptolemy II DE model, and the formal
verification of the synthesized model in Real-Time Maude, have been integrated
into Ptolemy II, enabling a model-engineering process that combines the
convenience of Ptolemy II DE modeling and simulation with formal verification
in Real-Time Maude.Comment: In Proceedings RTRTS 2010, arXiv:1009.398
A V-Diagram for the Design of Integrated Health Management for Unmanned Aerial Systems
Designing Integrated Vehicle Health Management (IVHM) for Unmanned Aerial Systems (UAS) is inherently complex. UAS are a system of systems (SoS) and IVHM is a product-service, thus the designer has to take into account many factors, such as: the design of the other systems of the UAS (e.g. engines, structure, communications), the split of functions between elements of the UAS, the intended operation/mission of the UAS, the cost verses benefit of monitoring a system/component/part, different techniques for monitoring the health of the UAS, optimizing the health of the fleet and not just the individual UAS, amongst others. The design of IVHM cannot sit alongside, or after, the design of UAS, but itself be integrated into the overall design to maximize IVHM’s potential.
Many different methods exist to help design complex products and manage the process. One method used is the V-diagram which is based on three concepts: decomposition & definition; integration & testing; and verification & validation. This paper adapts the V-diagram so that it can be used for designing IVHM for UAS. The adapted v-diagram splits into different tracks for the different system elements of the UAS and responses to health states (decomposition and definition). These tracks are then combined into an overall IVHM provision for the UAS (integration and testing), which can be verified and validated. The stages of the adapted V-diagram can easily be aligned with the stages of the V-diagram being used to design the UAS bringing the design of the IVHM in step with the overall design process. The adapted V-diagram also allows the design IVHM for a UAS to be broken down in to smaller tasks which can be assigned to people/teams with the relevant competencies. The adapted V-diagram could also be used to design IVHM for other SoS and other vehicles or products
Quantum Key Distribution Using Quantum Faraday Rotators
We propose a new quantum key distribution (QKD) protocol based on the fully
quantum mechanical states of the Faraday rotators. The protocol is
unconditionally secure against collective attacks for multi-photon source up to
two photons on a noisy environment. It is also robust against impersonation
attacks. The protocol may be implemented experimentally with the current
spintronics technology on semiconductors.Comment: 7 pages, 7 EPS figure
Inferring meta-covariates in classification
This paper develops an alternative method for gene selection that combines model based clustering and binary classification. By averaging the covariates within the clusters obtained from model based clustering, we define “meta-covariates” and use them to build a probit regression model, thereby selecting clusters of similarly behaving genes, aiding interpretation. This simultaneous learning task is accomplished by an EM algorithm that optimises a single likelihood function which rewards good performance at both classification and clustering. We explore the performance of our methodology on a well known leukaemia dataset and use the Gene Ontology to interpret our results
Hamiltonian and measuring time for analog quantum search
We derive in this study a Hamiltonian to solve with certainty the analog
quantum search problem analogue to the Grover algorithm. The general form of
the initial state is considered. Since the evaluation of the measuring time for
finding the marked state by probability of unity is crucially important in the
problem, especially when the Bohr frequency is high, we then give the exact
formula as a function of all given parameters for the measuring time.Comment: 5 page
The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review
This paper reviews the properties and application of di-methyl ether (DME) as a candidate fuel for compression-ignition engines. DME is produced by the conversion of various feedstock such as natural gas, coal, oil residues and bio-mass. To determine the technical feasibility of DME, the review compares its key properties with those of diesel fuel that are relevant to this application. DME’s diesel engine-compatible properties are its high cetane number and low auto-ignition temperature. In addition, its simple chemical structure and high oxygen content result in soot-free combustion in engines. Fuel injection of DME can be achieved through both conventional mechanical and current common-rail systems but requires slight modification of the standard system to prevent corrosion and overcome low lubricity. The spray characteristics of DME enable its application to compression-ignition engines despite some differences in its properties such as easier evaporation and lower density. Overall, the low particulate matter production of DME provides adequate justification for its consideration as a candidate fuel in compression-ignition engines. Recent research and development shows comparable output performance to a diesel fuel led engine but with lower particulate emissions. NOx emissions from DME-fuelled engines can meet future regulations with high exhaust gas recirculation in combination with a lean NOx trap. Although more development work has focused on medium or heavy-duty engines, this paper provides a comprehensive review of the technical feasibility of DME as a candidate fuel for environmentally-friendly compression-ignition engines independent of size or application
- …
