7 research outputs found

    Proton translocation by cytochrome c oxidase can take place without the conserved glutamic acid in subunit I

    No full text
    A glutamic acid residue in subunit I of the heme-copper oxidases is highly conserved and has been directly implicated in the O(2) reduction and proton-pumping mechanisms of these respiratory enzymes. Its mutation to residues other than aspartic acid dramatically inhibits activity, and proton translocation is lost. However, this glutamic acid is replaced by a nonacidic residue in some structurally distant members of the heme-copper oxidases, which have a tyrosine residue in the vicinity. Here, using cytochrome c oxidase from Paracoccus denitrificans, we show that replacement of the glutamic acid and a conserved glycine nearby lowers the catalytic activity to <0.1% of the wild-type value. But if, in addition, a phenylalanine that lies close in the structure is changed to tyrosine, the activity rises more than 100-fold and proton translocation is restored. Molecular dynamics simulations suggest that the tyrosine can support a transient array of water molecules that may be essential for proton transfer in the heme-copper oxidases. Surprisingly, the glutamic acid is thus not indispensable, which puts important constraints on the catalytic mechanism of these enzymes

    Gating of proton and water transfer in the respiratory enzyme cytochrome c oxidase

    No full text
    The membrane-bound enzyme cytochrome c oxidase is responsible for cell respiration in aerobic organisms and conserves free energy from O(2) reduction into an electrochemical proton gradient by coupling the redox reaction to proton-pumping across the membrane. O(2) reduction produces water at the bimetallic heme a(3)/Cu(B) active site next to a hydrophobic cavity deep within the membrane. Water molecules in this cavity have been suggested to play an important role in the proton-pumping mechanism. Here, we show by molecular dynamics simulations that the conserved arginine/heme a(3) Δ-propionate ion pair provides a gate, which exhibits reversible thermal opening that is governed by the redox state and the water molecules in the cavity. An important role of this gate in the proton-pumping mechanism is supported by site-directed mutagenesis experiments. Transport of the product water out of the enzyme must be rigidly controlled to prevent water-mediated proton leaks that could compromise the proton-pumping function. Exit of product water is observed through the same arginine/propionate gate, which provides an explanation for the observed extraordinary spatial specificity of water expulsion from the enzyme

    Structural insights into electron transfer in <em>caa<sub>3</sub> </em>-type cytochrome oxidase

    Get PDF
    Cytochrome c oxidase is a member of the heme copper oxidase superfamily (HCO)(1). HCOs function as the terminal enzymes in the respiratory chain of mitochondria and aerobic prokaryotes, coupling molecular oxygen reduction to transmembrane proton pumping. Integral to the enzyme’s function is the transfer of electrons from cytochrome c to the oxidase via a transient association of the two proteins. Electron entry and exit are proposed to occur from the same site on cytochrome c(2–4). Here we report the crystal structure of the caa(3)-type cytochrome oxidase from Thermus thermophilus, which has a covalently tethered cytochrome c domain. Crystals were grown in a bicontinuous mesophase using a synthetic short-chain monoacylglycerol as the hosting lipid. From the electron density map, at 2.36 Å resolution, a novel integral membrane subunit and a native glycoglycerophospholipid embedded in the complex were identified. Contrary to previous electron transfer mechanisms observed for soluble cytochrome c, the structure reveals the architecture of the electron transfer complex for the fused cupredoxin/cytochrome c domain which implicates different sites on cytochrome c for electron entry and exit. Support for an alternative to the classical proton gate characteristic of this HCO class is presented
    corecore