2,258 research outputs found
Structural, vibrational and thermal properties of densified silicates : insights from Molecular Dynamics
Structural, vibrational and thermal properties of densified sodium silicate
(NS2) are investigated with classical molecular dynamics simulations of the
glass and the liquid state. A systematic investigation of the glass structure
with respect to density was performed. We observe a repolymerization of the
network manifested by a transition from a tetrahedral to an octahedral silicon
environment, the decrease of the amount of non-bridging oxygen atoms and the
appearance of three-fold coordinated oxygen atoms (triclusters). Anomalous
changes in the medium range order are observed, the first sharp diffraction
peak showing a minimum of its full-width at half maximum according to density.
The previously reported vibrational trends in densified glasses are observed,
such as the shift of the Boson peak intensity to higher frequencies and the
decrease of its intensity. Finally, we show that the thermal behavior of the
liquid can be reproduced by the Birch-Murnaghan equation of states, thus
allowing us to compute the isothermal compressibility
Recommended from our members
HDO And SO2 Thermal Mapping On Venus II. The So2 Spatial Distribution Above And Within The Clouds
Sulfur dioxide and water vapor, two key species of Venus photochemistry, are known to exhibit significant spatial and temporal variations above the cloud top. In particular, ground-based thermal imaging spectroscopy at high spectral resolution, achieved on Venus in January 2012, has shown evidence for strong SO2 variations on timescales shorter than a day. We have continued our observing campaign using the TEXES high-resolution imaging spectrometer at the NASA InfraRed Telescope Facility to map sulfur dioxide over the disk of Venus at two different wavelengths, 7 mu m (already used in the previous study) and 19 mu m. The 7 mu m radiation probes the top of the H2SO4 cloud, while the 19 mu m radiation probes a few kilometers below within the cloud. Observations took place on October 4 and 5, 2012. Both HDO and SO2 lines are identified in our 7-mu m spectra and SO2 is also easily identified at 19 mu m. The CO2 lines at 7 and 19 mu m are used to infer the thermal structure. An isothermal/inversion layer is present at high latitudes (above 60 N and S) in the polar collars, which was not detected in October 2012. The enhancement of the polar collar in October 2012 is probably due to the fact that the morning terminator is observed, while the January data probed the evening terminator. As observed in our previous run, the HDO map is relatively uniform over the disk of Venus, with a mean mixing ratio of about 1 ppm. In contrast, the SO2 maps at 19 mu m show intensity variations by a factor of about 2 over the disk within the cloud, less patchy than observed at the cloud top at 7 mu m. In addition, the SO2 maps seem to indicate significant temporal changes within an hour. There is evidence for a cutoff in the SO2 vertical distribution above the cloud top, also previously observed by SPICAV/SOIR aboard Venus Express and predicted by photochemical models.NASA NNX-08AE38AIRTF AST-0607312, AST-0708074Astronom
The Assembly of the Red Sequence at z ~ 1: The Color and Spectral Properties of Galaxies in the Cl1604 Supercluster
We investigate the properties of the 525 spectroscopically confirmed members of the Cl1604 supercluster at z ~ 0.9 as part of the Observations of Redshift Evolution in Large Scale Environments survey. In particular, we focus on the photometric, stellar mass, morphological, and spectral properties of the 305 member galaxies of the eight clusters and groups that comprise the Cl1604 supercluster. Using an extensive Keck Low-Resolution Imaging Spectrometer (LRIS)/DEep Imaging Multi-Object Spectrograph (DEIMOS) spectroscopic database in conjunction with ten-band ground-based, Spitzer, and Hubble Space Telescope imaging, we investigate the buildup of the red sequence in groups and clusters at high redshift. Nearly all of the brightest and most massive red-sequence galaxies present in the supercluster environment are found to lie within the bounds of the cluster and group systems, with a surprisingly large number of such galaxies present in low-mass group systems. Despite the prevalence of these red-sequence galaxies, we find that the average cluster galaxy has a spectrum indicative of a star-forming galaxy, with a star formation rate between those of z ~ 1 field galaxies and moderate-redshift cluster galaxies. The average group galaxy is even more active, exhibiting spectral properties indicative of a starburst. The presence of massive, red galaxies and the high fraction of starbursting galaxies present in the group environment suggest that significant processing is occurring in group environments at z ~ 1 and earlier. There is a deficit of low-luminosity red-sequence galaxies in all Cl1604 clusters and groups, suggesting that such galaxies transition to the red sequence at later times. Extremely massive (~10^(12)M_ā) red-sequence galaxies routinely observed in rich clusters at z ~ 0 are also absent from the Cl1604 clusters and groups. We suggest that such galaxies form at later times through merging processes. There are significant populations of transition galaxies at intermediate stellar masses (log(M_*)=10.25-10.75) present in the group and cluster environments, suggesting that this range is important for the buildup of the red-sequence mass function at z ~ 1. Through a comparison of the transitional populations present in the Cl1604 cluster and group systems, we find evidence that massive blue-cloud galaxies are quenched earliest in the most dynamically relaxed systems and at progressively later times in dynamically unrelaxed systems
The X-ray Spectrum and Spectral Energy Distribution of FIRST J155633.8+351758: a LoBAL Quasar with a Probable Polar Outflow
We report the results of a new 60 ks Chandra X-ray Observatory Advanced CCD
Imaging Spectrometer S-array (ACIS-S) observation of the reddened,
radio-selected, highly polarized `FeLoBAL' quasar FIRST J1556+3517. We
investigated a number of models of varied sophistication to fit the 531-photon
spectrum. These models ranged from simple power laws to power laws absorbed by
hydrogen gas in differing ionization states and degrees of partial covering.
Preferred fits indicate that the intrinsic X-ray flux is consistent with that
expected for quasars of similarly high luminosity, i.e., an intrinsic,
dereddened and unabsorbed optical to X-ray spectral index of -1.7. We cannot
tightly constrain the intrinsic X-ray power-law slope, but find indications
that it is flat (photon index Gamma = 1.7 or flatter at a >99% confidence for a
neutral hydrogen absorber model). Absorption is present, with a column density
a few times 10^23 cm^-2, with both partially ionized models and partially
covering neutral hydrogen models providing good fits. We present several lines
of argument that suggest the fraction of X-ray emissions associated with the
radio jet is not large.
We combine our Chandra data with observations from the literature to
construct the spectral energy distribution of FIRST J1556+3517 from radio to
X-ray energies. We make corrections for Doppler beaming for the pole-on radio
jet, optical dust reddening, and X-ray absorption, in order to recover a
probable intrinsic spectrum. The quasar FIRST J1556+3517 seems to be an
intrinsically normal radio-quiet quasar with a reddened optical/UV spectrum, a
Doppler-boosted but intrinsically weak radio jet, and an X-ray absorber not
dissimilar from that of other broad absorption line quasars.Comment: to be published in MNRA
Evaluating the efficacy of independent versus simultaneous management strategies to address ecological and genetic threats to population viability
ACKNOWLEDGMENTS We thank Sue Bignal, all land-owners and farmers and everyone who helped with fieldwork on Islay. We thank members of the Scottish Chough Forum, particularly Rae Mckenzie and Des Thompson for valuable input on management scenarios. AET was funded by Scottish Natural Heritage (SNH) and Royal Society for the Protection of Birds. SRF was funded by a Natural Environment Research Council iCASE studentship supported by SNH.Peer reviewedPublisher PD
A study of volatile compounds in the breath of children with type 1 diabetes
A pilot study of exhaled volatile compounds and their correlation with blood glucose levels in eight children with type 1 diabetes is reported. Five paired blood and breath samples were obtained from each child over a 6 hour period. The blood glucose concentration ranged from 41.4 to 435.6 mg/dL. Breath samples were collected in Tedlar bags and immediately evacuated through thermal desorption tubes packed with Carbopack B and C. The VOCs were later recovered by thermal desorption and analysed using gas chromatography mass spectrometry. The study identified 74 volatile compounds present in at least 10% of the patient samples. Of these 74 volatiles 36 were found in all patient samples tested. Further analysis of the 36 compounds found that none showed significant overall correlation with blood glucose levels. Isoprene showed a weak negative correlation with blood glucose levels. Acetone was found to have no correlation with blood glucose levels for the patients studied. Some patients showed significant individual correlation between the relative peak areas of certain compounds and blood glucose levels. However, there was no consistent pattern observed within these results across all 8 patients. Additional breath samples were collected in Tedlar bags and analysed using SIFTMS for 3 of the patients and a healthy control. The levels of 24 volatiles are reported and were found to be generally consistent with previously reported SIFT-MS data. In agreement with the GCMS data, no compounds exhibited a significant overall correlation with blood glucose level
How Accurate Are Population Models? Lessons From Landscape-Scale Tests In A Fragmented System
There is a growing debate about the ability of Population Viability Analysis (PVA) to predict the risk of extinction. Previously, the debate has focused largely on models where spatial variation and species movement are ignored. We present a synthesis of the key results for an array of different species for which detailed tests of the accuracy of PVA models were completed. These models included spatial variation in habitat quality and the movement of individuals across a landscape. The models were good approximations for some species, but poor for others. Predictive ability was limited by complex processes typically overlooked in spatial population models, these being interactions between landscape structure and life history attributes. Accuracy of models could not be determined a priori, although model tests indicated how they might be improved. Importantly, model predictions were poor for some species that are among the best studied vertebrates in Australia. This indicated that although the availability of good life history data is a key part of PVA other factors also influence model accuracy. We were also able to draw broad conclusions about the sorts of populations and life history characteristics where model predictions are likely to be less accurate. Predictions of extinction risk are often essential for real-world population management. Therefore, we believe that although PVA has been shown to be less than perfect, it remains a useful tool particularly in the absence of alternative approaches. Hence, tests of PVA models should be motivated by the cycle of testing and improvement
- ā¦