4,750 research outputs found

    The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots

    Get PDF
    BACKGROUND: The genetic and molecular mechanisms responsible for and associated specifically with the development and progression of malignant prostate cells are largely unidentified. In addition, despite its implication in virtually all malignant cells, the role of altered cellular metabolism as an essential factor in prostate malignancy has been largely ignored. Moreover, the intermediary metabolism of normal prostate as well as malignant prostate cells is among the least studied and most poorly understood of all mammalian cells. Some important factors, especially the role of zinc, have been identified and implicated in the development and progression of prostrate malignancy. In this review, we provide a current and updated integrated assessment of the relationships of intermediary metabolism in normal prostate and in prostate cancer. The experimental and clinical evidence that leads to the formulation of concepts of normal and malignant prostate metabolism is presented. The evidence for a concept of zinc as a tumor suppressor agent and Zip1 zinc transporter as a tumor-suppressor gene is described. RESULTS: The specialized function of the normal prostate glandular epithelium to produce and secrete enormously high levels of citrate involves and requires unique intermediary metabolism activities that are not generally associated with other normal mammalian cells. The accumulation of zinc by these cells is an essential factor in this unique metabolic relationship. In malignancy, the normal zinc-accumulating citrate-producing epithelial cells are metabolically transformed to citrate-oxidizing cells that lose the ability to accumulate zinc. A genetic alteration in the expression of ZIP1 zinc transporter is associated with this metabolic transformation. These genetic/metabolic relationships have important consequences on citrate-related metabolism, bioenergetics, cell proliferation and invasive capabilities of the malignant cells, which result in tumor-suppression characteristics. CONCLUSION: The genetic/metabolic relationships in normal prostate glandular epithelium are driven by the unique function to accumulate and secrete citrate. The genetic/metabolic transformation of the prostate malignant cells is driven by the metabolic/bioenergetic, growth/proliferative, and invasive/migration requirements of the malignant process. Zinc is critical to these relationships. An understanding of these genetic/metabolic relationships provides new directions and opportunities for development of regimens for the prevention and treatment of prostate cancer. Important insight into the genetic/metabolic requirements of the prostate malignant process is now evolving. Most importantly at this time, an appreciation and recognition of the genetic/metabolic significance and implications in the development of prostate malignancy is imperative; and much needed research in this area is essential. Hopefully, this review will help to achieve these goals

    Tumor cell metabolism: the marriage of molecular genetics and proteomics with cellular intermediary metabolism; proceed with caution!

    Get PDF
    Metabolic transformations of malignant cells are essential to the development and progression of all cancers. The understanding of the pathogenesis and progression of cancer requires the establishment of the altered genetic/metabolic factors that are essential to the development, growth, and proliferation of the malignant cells. Recognition of this important relationship has resulted in a resurgence of interest in the intermediary metabolism of tumor cells. The role of molecular genetics and proteomics and the application of molecular technology in assessing altered cellular metabolism has become a major area of biomedical research. The contemporary generation of biomedical scientists is exceptionally well trained in all areas of molecular biology and molecular technology, which are now important tools to be applied to the regulation of cellular intermediary metabolism. Simultaneously, the didactic and methodological training associated with the principles and operation of metabolic pathways, enzymology, cellular enzyme activity, and associated biochemical implications has been diminished and often eliminated from the pre- and post-doctoral programs. Interpretations and conclusions of alterations in cellular enzyme activity and associated metabolic pathways based on genetic/proteomic changes can and will result in misrepresentation of important metabolic implications in malignancy and other diseases. It is essential that the genetic/proteomic studies be coupled to biochemical/metabolic cellular events to satisfy the axiom: "genetic transformations and proteomic alterations will have little relevancy to disease processes if the genetic/proteomic alterations are not manifested in altered and impaired cellular and metabolic function". The appropriate marriage of molecular genetics/proteomics with the regulation of cellular intermediary metabolism will provide new revelations and understanding of malignancy that could not be achieved in earlier generations

    Point-of-care ultrasonography—An essential skill for medical graduates?

    Full text link
    The recent proliferation of point-of-care ultrasonography (POCUS) in the clinical practice of many medical specialties has exposed persistent barriers to education, training and standardisation. Specialist training curriculums are already overwhelming, having grossly insufficient time available for the specialist trainees and for the small number of available trainers alike to incorporate POCUS into postgraduate education. The logical solution to overcome these barriers could be to incorporate basic POCUS education and training into the undergraduate university curriculums, introducing longitudinal integration with other relevant medical sciences. The Australasian Society of Ultrasound in Medicine already has well-established educational programmes in POCUS with standardised assessment of competency, which could potentially offer the basis for symbiosis with the Australian and New Zealand medical schools

    COVID-19 Impacts for NH Adults

    Get PDF

    Community-linked maternal death review (CLMDR) to measure and prevent maternal mortality: a pilot study in rural Malawi.

    Get PDF
    In Malawi, maternal mortality remains high. Existing maternal death reviews fail to adequately review most deaths, or capture those that occur outside the health system. We assessed the value of community involvement to improve capture and response to community maternal deaths

    3p photoabsorption of free and bound Cr, Cr⁺, Mn, and Mn⁺

    Get PDF
    A dual-laser-plasma technique has been used to measure photoabsorption by atomic Cr and Mn and their ions at photon energies between 40 and 70 eV, where the dominant absorption mechanism is excitation of the 3p subshell. No dramatic differences are observed between the absorption spectra of Mn and Mn+, and these spectra are similar to those of Mn metal and MnCl2. The spectra of Cr and Cr+ are strikingly dissimilar, the mean excitation energy being about 5 eV greater in the ion. We attribute this to strong mixing of the localized 3d6 configuration with 3d5nd Rydberg configurations, an effect that is also responsible for the anomalous appearance of the Cr spectrum with respect to those of the other iron-period elements. The absorption spectra of Cr metal and CrCl2 take forms intermediate between those of Cr and Cr+. We give spectroscopic assignments to most of the sharp absorption features of Cr+ and determine the 3p ionization thresholds from quantum-defect analysis

    Absolute photoionization cross section measurements of the Kr I-isoelectronic sequence

    Get PDF
    Photoionization spectra have been recorded in the 4s, 4p and 3d resonance regions for the Kr Iisoelectronic sequence using both the dual laser produced plasma technique (at DCU) to produce photoabsorption spectra, and the merged ion beam and synchrotron radiation technique (at ASTRID) to measure absolute photoionization cross sections. Profile parameters are compared for the 4s − np resonances of Rb+ and Sr2+. Many new 4p " ns, md transitions are identified with the aid of Hartree-Fock calculations, and consistent quantum defects are observed for the various ns and md Rydberg series. Absolute single and double photoionization cross sections recorded in the 3d region for Rb+ and Sr2+ ions show preferential decay via double photoionization. This is only the second report where both the DLP technique and the merged beam technique have been used simultaneously to record photoionization spectra, and the advantages of both techniques (i.e. better resolution in the case of DLP and values for absolute photoionization cross sections in the case of the merged beam technique) are highlighted

    EAAC1 is expressed in rat and human prostate epithelial cells; functions as a high-affinity L-aspartate transporter; and is regulated by prolactin and testosterone

    Get PDF
    BACKGROUND: Prostate epithelial cells accumulate a high level of aspartate that is utilized as a substrate for their unique function of production and secretion of enormously high levels of citrate. In most mammalian cells aspartate is synthesized; and, therefore is a non-essential amino acid. In contrast, in citrate-producing prostate cells, aspartate is an essential amino acid that must be derived from circulation. The prostate intracellular/extracellular conditions present a 40:1 concentration gradient. Therefore, these cells must possess a plasma membrane-associated aspartate uptake transport process to achieve their functional activity. In earlier kinetic studies we identified the existence of a unique Na+-dependent high-affinity L-aspartate transport process in rat prostate secretory epithelial cells. The present report is concerned with the identification of this putative L-aspartate transporter in rat and human prostate cells. RESULTS: The studies show for the first time that EAAC1 is expressed in normal rat prostate epithelial cells, in normal and hyperplastic human prostate glands, and in human malignant prostate cell lines. EAAC1 expression and high-affinity L-aspartate transport are correspondingly down-regulated by EAAC1 siRNA knock down. Exposure of prostate cells to physiological levels of prolactin or testosterone results in an up-regulation of EAAC1 expression and a corresponding increase in the high-affinity transport of L-aspartate into the cells. CONCLUSION: This study shows that EAAC1 functions as the high-affinity L-aspartate transporter that is responsible for the uptake and accumulation of aspartate in prostate cells. In other cells (predominantly excitable tissue cells), EAAC1 has been reported to function as a glutamate transporter rather than as an aspartate transporter. The regulation of EAAC1 expression and L-aspartate transport by testosterone and prolactin is consistent with their regulation of citrate production in prostate cells. The identification of EAAC1 as the high-affinity L-aspartate transporter now permits studies to elucidate the mechanism of hormonal regulation of EAAC1 gene expression, and to investigate the mechanism by which the cellular environment effects the functioning of EAAC1 as an aspartate transporter or as a glutamate transporter

    Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues

    Get PDF
    BACKGROUND: In prostate cancer, normal citrate-producing glandular secretory epithelial cells undergo a metabolic transformation to malignant citrate-oxidizing cells. m-Aconitase is the critical step involved in this altered citrate metabolism that is essential to prostate malignancy. The limiting m-aconitase activity in prostate epithelial cells could be the result of a decreased level of m-aconitase enzyme and/or the inhibition of existing m-aconitase. Earlier studies identified zinc as an inhibitor of m-aconitase activity in prostate cells; and that the depletion of zinc in malignant cells is an important factor in this metabolic transformation. However, a possibility remains that an altered expression and level of m-aconitase enzyme might also be involved in this metabolic transformation. To address this issue, the in situ level of m-aconitase enzyme was determined by immunohistochemical analysis of prostate cancer tissue sections and malignant prostate cell lines. RESULTS: The immunocytochemical procedure successfully identified the presence of m-aconitase localized in the mitochondrial compartment in PC-3, LNCaP, and DU-145 malignant prostate cell lines. The examination of prostate tissue sections from prostate cancer subjects demonstrated that m-aconitase enzyme is present in the glandular epithelium of normal glands, hyperplastic glands, adenocrcinomatous glands, and prostatic intraepithelial neoplastic foci. Quantitative analysis of the relative level of m-aconitase in the glandular epithelium of citrate-producing adenomatous glands versus the citrate-oxidizing adenocarcinomatous glands revealed no significant difference in m-aconitase enzyme levels. This is in contrast to the down-regulation of ZIP1 zinc transporter in the malignant glands versus hyperplastic glands that exists in the same tissue samples. CONCLUSION: The results demonstrate the existence of m-aconitase enzyme in the citrate-producing glandular epithelial cells; so that deficient m-aconitase enzyme is not associated with the limiting m-aconitase activity that prevents citrate oxidation in these cells. The level of m-aconitase is maintained in the malignant cells; so that an altered enzyme level is not associated with the increased m-aconitase activity. Consequently, the elevated zinc level that inhibits m-aconitase enzyme is responsible for the impaired citrate oxidation in normal and hyperplastic prostate glandular epithelial cells. Moreover, the down-regulation of ZIP1 zinc transporter and corresponding depletion of zinc results in the increase in the activity of the existing m-aconitase activity in the malignant prostate cells. The studies now define the mechanism for the metabolic transformation that characterizes the essential transition of normal citrate-producing epithelial cells to malignant citrate-oxidizing cells

    The Involvement of Bax in Zinc-Induced Mitochondrial Apoptogenesis in Malignant Prostate Cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development and progression of prostate cancer requires the transformation of normal zinc-accumulating epithelial cells to malignant cells that have lost the ability to accumulate zinc. This metabolic transformation is essential so that the tumor suppressive effects of zinc can be eliminated and the malignant process can proceed. One of the major effects of zinc is its prevention of prostate cell growth by its induction of apoptosis. The accumulation of cellular zinc has a direct effect on the mitochondria that results in the release of cytochrome c, which initiates the caspase cascade that leads to apoptosis. This effect is associated with the mitochondrial pore-forming process, but the mechanism by which zinc induces the release of cytochrome c and induces mitochondrial apoptogenesis has not been resolved. The present report provides for the first time information that implicates Bax in the zinc induction of mitochondrial apoptogenesis.</p> <p>Results</p> <p>The effects of zinc treatment on the Bax levels of PC-3 cells and on the mitochondria were determined. The exposure of isolated mitochondria to zinc results in an increase in membrane bound Bax, which is due to the mitochondrial insertion of endogenous resident Bax. The mitochondrial Bax/Bcl-2 ratio is increased by zinc treatment. Zinc treatment of PC-3 cells also increases the mitochondrial level of Bax. In addition, zinc treatment increases the cellular level of Bax and the cellular Bax/Bcl2 ratio. Down regulation of Bax in PC-3 cells eliminates the zinc induction of apoptosis. The increase in cellular Bax level appears to involve zinc induction of Bax gene expression.</p> <p>Conclusion</p> <p>This report extends and confirms that physiological levels of zinc induce apoptosis in prostate cells. The study provides evidence that zinc is directly involved in facilitating a Bax-associated pore formation process that initiates mitochondrial apoptogenesis. This is enhanced by an additional effect of zinc on increasing the cellular level of Bax. To avoid the anti-tumor apoptogenic effects of zinc, the malignant cells in prostate cancer posses genetic/metabolic adaptations that prevent the cellular accumulation of zinc.</p
    corecore