315 research outputs found
Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry
A variety of events such as gamma-ray bursts and supernovae may expose the
Earth to an increased flux of high-energy cosmic rays, with potentially
important effects on the biosphere. Existing atmospheric chemistry software
does not have the capability of incorporating the effects of substantial cosmic
ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight
Center two-dimensional (latitude, altitude) time-dependent atmospheric model
(NGSFC), is used to study atmospheric chemistry changes. Using CORSIKA, we have
created tables that can be used to compute high energy cosmic ray (10 GeV - 1
PeV) induced atmospheric ionization and also, with the use of the NGSFC code,
can be used to simulate the resulting atmospheric chemistry changes. We discuss
the tables, their uses, weaknesses, and strengths.Comment: In press: Journal of Cosmology and Astroparticle Physics. 6 figures,
3 tables, two associated data files. Major revisions, including results of a
greatly expanded computation, clarification and updated references. In the
future we will expand the table to at least EeV levels
A Comparison Between AMS 700 and Coloplast Titan: A Systematic Literature Review
There are only two three-piece inflatable penile prostheses (IPP) available to patients in the American market: the AMS (American Medical Systems) 700 series (Boston Scientific, Massachusetts) and the Coloplast Titan® series (Coloplast, Minnesota), and data comparing the two are scant. The aim of our study was to summarize the current scientific evidence comparing the two. A systematic literature review was conducted on PubMed. A 10-year filter was placed to include only studies published after Coloplast launched the Titan Touch® release pump. Eligibility criteria included articles discussing specifically the AMS 700 and Coloplast Titan® models. Further searches for studies on patient/partner satisfaction were conducted. Abstracts were reviewed to include studies focusing specifically on the models we are studying and studies on patient satisfaction using the Erectile Dysfunction Inventory of Treatment Satisfaction (EDITS) questionnaire. The Coloplast device demonstrated slightly greater resistance to the stimulated forces of penetration and gravity. Coloplast implants coated with vancomycin/gentamicin had the highest infection rate followed by the AMS penile prosthesis and the rifampin/gentamicin coating had the lowest infection rate. Prosthesis durability and survival were similar between both brands. Overall satisfaction was high but comparisons are inconsistent. The literature is inconclusive about which device is superior. We suggest randomized, multicenter, prospective studies to help further elucidate the highlights of each product
Accounting for epistatic interactions improves the functional analysis of protein structures
Motivation: The constraints under which sequence, structure and function coevolve are not fully understood. Bringing this mutual relationship to light can reveal the molecular basis of binding, catalysis and allostery, thereby identifying function and rationally guiding protein redesign. Underlying these relationships are the epistatic interactions that occur when the consequences of a mutation to a protein are determined by the genetic background in which it occurs. Based on prior data, we hypothesize that epistatic forces operate most strongly between residues nearby in the structure, resulting in smooth evolutionary importance across the structure. Methods and Results: We find that when residue scores of evolutionary importance are distributed smoothly between nearby residues, functional site prediction accuracy improves. Accordingly, we designed a novel measure of evolutionary importance that focuses on the interaction between pairs of structurally neighboring residues. This measure that we term pair-interaction Evolutionary Trace yields greater functional site overlap and better structure-based proteome-wide functional predictions. Conclusions: Our data show that the structural smoothness of evolutionary importance is a fundamental feature of the coevolution of sequence, structure and function. Mutations operate on individual residues, but selective pressure depends in part on the extent to which a mutation perturbs interactions with neighboring residues. In practice, this principle led us to redefine the importance of a residue in terms of the importance of its epistatic interactions with neighbors, yielding better annotation of functional residues, motivating experimental validation of a novel functional site in LexA and refining protein function prediction. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online
Atmospheric Consequences of Cosmic Ray Variability in the Extragalactic Shock Model II: Revised ionization levels and their consequences
It has been suggested that galactic shock asymmetry induced by our galaxy's
infall toward the Virgo Cluster may be a source of periodicity in cosmic ray
exposure as the solar system oscillates perpendicular to the galactic plane.
Here we investigate a mechanism by which cosmic rays might affect terrestrial
biodiversity, ionization and dissociation in the atmosphere, resulting in
depletion of ozone and a resulting increase in the dangerous solar UVB flux on
the ground, with an improved ionization background computation averaged over a
massive ensemble (about 7 x 10^5) shower simulations. We study minimal and full
exposure to the postulated extragalactic background. The atmospheric effects
are greater than with our earlier, simplified ionization model. At the lower
end of the range effects are too small to be of serious consequence. At the
upper end of the range, ~6 % global average loss of ozone column density
exceeds that currently experienced due to effects such as accumulated
chlorofluorocarbons. The intensity is less than a nearby supernova or galactic
gamma-ray burst, but the duration would be about 10^6 times longer. Present UVB
enhancement from current ozone depletion ~3% is a documented stress on the
biosphere, but a depletion of the magnitude found at the upper end of our range
would double the global average UVB flux. For estimates at the upper end of the
range of the cosmic ray variability over geologic time, the mechanism of
atmospheric ozone depletion may provide a major biological stress, which could
easily bring about major loss of biodiversity. Future high energy astrophysical
observations will resolve the question of whether such depletion is likely.Comment: 22 pages, 5 figures, to be published in Journal of Geophysical
Research--Planets. This is an update and replacement for our 2008 paper, with
a much more extensive simulation of air shower ionization. Ionization effects
and ozone depletion are somewhat large
Atmospheric consequences of cosmic ray variability in the extragalactic shock model: 2. Revised ionization levels and their consequences
This is the publisher's version, also available electronically from http://onlinelibrary.wiley.com.It has been suggested that galactic shock asymmetry induced by our galaxy's infall toward the Virgo Cluster may be a source of periodicity in cosmic ray exposure as the solar system oscillates perpendicular to the galactic plane, thereby, inducing an observed terrestrial periodicity in biodiversity. There are a number of plausible mechanisms by which cosmic rays might affect terrestrial biodiversity. Here we investigate one of these mechanisms, the consequent ionization and dissociation in the atmosphere, resulting in changes in atmospheric chemistry that culminate in the depletion of ozone and a resulting increase in the dangerous solar UVB flux on the ground. We use a heuristic model of the cosmic ray intensity enhancement originally suggested by Medvedev and Melott (2007) to compute steady state atmospheric effects. This paper is a reexamination of an issue we have studied before with a simplified approximation for the distribution of incidence angles. The new results are based on an improved ionization background computation averaged over a massive ensemble (about 7 × 10^(5)) shower simulations at various energies and incidence angles. We adopt a range with a minimal model and a fit to full exposure to the postulated extragalactic background. The atmospheric effects are greater than they were with our earlier, simplified ionization model. At the lower end of the intensity range, we find that the effects are too small to be of serious consequence. At the upper end of this range, ∼6% global average loss of ozone column density exceeds that currently experienced due to anthropogenic effects such as accumulated chlorofluorocarbons. We discuss some of the possible effects. The intensity of the atmospheric effects is less than those of a nearby supernova or galactic γ ray burst, but the duration of the effects would be about 106 times longer. Present UVB enhancement from current ozone depletion ∼3% is a documented stress on the biosphere, but a depletion of the magnitude found at the upper end of our range would approximately double the global average UVB flux. We conclude that for estimates at the upper end of the reasonable range of the cosmic ray variability over geologic time, the mechanism of atmospheric ozone depletion may provide a major biological stress, which could easily bring about major loss of biodiversity. It is possible that future high-energy astrophysical observations will resolve the question of whether such depletion is likely
- …