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ABSTRACT

Motivation: The constraints under which sequence, structure and

function coevolve are not fully understood. Bringing this mutual rela-

tionship to light can reveal the molecular basis of binding, catalysis

and allostery, thereby identifying function and rationally guiding protein

redesign. Underlying these relationships are the epistatic interactions

that occur when the consequences of a mutation to a protein are

determined by the genetic background in which it occurs. Based on

prior data, we hypothesize that epistatic forces operate most strongly

between residues nearby in the structure, resulting in smooth evolu-

tionary importance across the structure.

Methods and Results: We find that when residue scores of evolu-

tionary importance are distributed smoothly between nearby residues,

functional site prediction accuracy improves. Accordingly, we

designed a novel measure of evolutionary importance that focuses

on the interaction between pairs of structurally neighboring residues.

This measure that we term pair-interaction Evolutionary Trace yields

greater functional site overlap and better structure-based proteome-

wide functional predictions.

Conclusions: Our data show that the structural smoothness of

evolutionary importance is a fundamental feature of the coevolution

of sequence, structure and function. Mutations operate on individual

residues, but selective pressure depends in part on the extent to which

a mutation perturbs interactions with neighboring residues. In practice,

this principle led us to redefine the importance of a residue in terms of

the importance of its epistatic interactions with neighbors, yielding

better annotation of functional residues, motivating experimental

validation of a novel functional site in LexA and refining protein func-

tion prediction.

Contact: lichtarge@bcm.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Protein functional sites and their key residue determinants are

important to elucidate the molecular details underlying protein

function (Laskowski and Thornton, 2008), design drugs (Hardy

and Wells, 2004), engineer proteins (Thyme et al., 2009) and

predict protein function (Erdin et al., 2010). The experimental

gold standard to map these sites is alanine scanning (Clackson

and Wells, 1995; Onrust et al., 1997), but this approach is rarely

exhaustive and limited by the availability of biologically relevant

assays.
Therefore, complementary, inexpensive and scalable

approaches search for functional sites and residues by analyzing

the vast evolutionary record of protein sequences computation-

ally (Aloy et al., 2001; Buslje et al., 2010; Casari et al., 1995;

Engelen et al., 2009; Glaser et al., 2003; Halabi et al., 2009;

Innis, 2007; Pupko et al., 2002; Pazos et al., 2006; Valdar,

2002). The Evolutionary Trace (ET) (Lichtarge et al., 1996;

Mihalek et al., 2004) identifies functionally important residue

positions by finding sequence substitution patterns correlated

with divergences among homologs, thereby explicitly taking

phylogenetic relationships into account. ET predictions have

been extensively validated experimentally (Onrust et al., 1997;

Rajagopalan et al., 2006; Ribes-Zamora et al., 2007; Rodriguez

et al., 2010; Shenoy et al., 2006; Sowa et al., 2000, 2001) and

through large-scale retrospective predictions of functional sites

(Yao et al., 2003) and protein functions (Venner et al., 2010).

These studies point to a number of general and consistent obser-

vations in well-structured protein domains: (i) sequence positions

may be ranked by evolutionary importance; (ii) most important

sequence residues cluster structurally (Madabushi et al., 2002);

(iii) these structural clusters predict functional sites (Yao et al.,

2003), such that (iv) small structure–function motifs called 3D

templates based on these clusters can predict protein function on

a genomic scale (Erdin et al., 2010; Kristensen et al., 2008;

Venner et al., 2010; Ward et al., 2008). The evolutionary prin-

ciples that give rise to these useful patterns remain unclear.

This work suggests that epistasis drives these patterns.

Traditionally, epistasis means interactions between genes; how-

ever, it is also recognized as a major force in molecular evolution

of individual proteins (Breen et al., 2012). Strong epistatic inter-

actions occur between contact residues (Ortlund et al., 2007),

presumably because function and adaptation are intimately

related to mutual interaction and variation of physically neigh-

boring residues. Indeed, improving the clustering quality of

evolutionarily important residues improves predictions of*To whom correspondence should be addressed.
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functional sites (Mihalek et al., 2006a, b; Wilkins et al., 2010). In

that light, the clustering of these residues simply reflects the fun-

damental epistatic coupling of neighbors.
These observations motivate a series of hypotheses. We

hypothesize that if epistasis and function constrain residue neigh-

bors during selective pressure, then evolutionary importance

should distribute smoothly over a protein structure. If so, opti-

mizing ET rank smoothness, for example, by selecting sequences

appropriately, should improve predictions of functional sites,

molecular determinants and functions. Thereby, a modified ET

algorithm could directly enforce smoothness and improve pre-

dictions by focusing primarily on epistatic interactions.
Our results show that, in practice, we can assess ET rank

smoothness by treating the structure as a network, or graph, of

amino acid nodes, linking these nodes by edges indicating

structural contact and applying the discrete Laplacian operator

from a graph theory to quantify ET smoothness. Selections of

input sequences that minimize the smoothing function con-

structed from the Laplacian operator then led to better func-

tional site analyses by ET. Moreover, a new inherently

smoother pair-interaction Evolutionary Trace (piET) algorithm

built to measure the importance of neighbor-to-neighbor residue

pairs, instead of single residues, improves functional site predic-

tions in retrospective study and in an experimental application

on Escherichia coli LexA—a protein that triggers the SOS re-

sponse through which bacteria evolve drug resistance. Finally,

piET improves large-scale functional annotations. Together,

these data show that the smoothest structural distribution of

evolutionary importance reflects functional information best,

and that epistatic interactions are strongly reflective of the effect-

ive distance between residues.

2 METHODS

2.1 Measuring the smoothness of a rank distribution

To measure the smoothness of ET ranks over a protein, we treat the

structure as a graph. The nodes of this graph are the residues, and its

edges indicate adjacent sequence residues or close contacts in the known

structure. This focus on neighbors is because they will likely experience

most strongly the impact of a substitution. The Laplacian operator

(Chung, 1997) is the discrete graph counterpart of the standard

Laplacian operator used to measure smoothness in a continuous func-

tion, and it is computed with two matrices: the adjacency matrix, denoted

A, which specifies which residues contact each other in the protein struc-

ture (within a minimum atom–atom distance of four Angstroms); and the

degree matrix, denoted D, which describes the number of residues

adjacent to residue i. Specifically, A is defined as

Aði, jÞ ¼
1 residues i, j in contact
0 otherwise

�
ð1Þ

This simple form could eventually be made to account for the number

of atom–atom contacts, their apparent distances, electrochemical

propensities and other attributes of residue neighbor interactions. The

degree matrix, D, is a function of Aði, jÞ

Dði, jÞ ¼

P
k Aði, kÞ if i ¼ j

0 otherwise

�
ð2Þ

The Laplacian operator L is then defined as L ¼ D� A. Following

standard practice, we may measure the smoothness of any vector field

x distributed across the nodes of a graph defined by A through the

quadratic form of its Laplacian (Chung, 1997), which is also referred to

as the smoothing function, and defined by

xTLx ¼
X
i, j

Aði, jÞðxj � xiÞ
2

ð3Þ

In this work, the vector field x is the relative evolutionary importance

(ET rank) of each residue given by the real-value Evolutionary Trace

(rvET) algorithm (Mihalek et al., 2004), which measures the size of a

phylogenetic divergence associated with a substitution at each sequence

position. A short review of this algorithm can be found in Supplementary

Materials. By convention, lower values of xTLx indicate smoother distri-

butions of the xi over the protein structure, meaning that the difference in

ET ranks is smaller between residues that are in contact.

2.2 Functional determinant test set

The dataset of functional determinants was taken from a previous work

(Wilkins et al., 2010). The gold standard functional sites for protein–

ligand interactions are defined by the database PDBsum (Laskowski

et al., 2005). The protein–protein functional sites are the residues

within five Angstroms of the residues in the complexed proteins. To

obtain a multiple sequence alignment (MSA) for each query protein, a

set of sequences was retrieved with BLAST (Altschul et al., 1997) (using

NCBI’s non-redundant protein sequence database, the BLOSUM62 sub-

stitution matrix and default parameters). The top 500 homologs with an

e-value better than 0.05 were retrieved from NCBI0s Protein database.

After we generated alignments, the set was curated to remove sequences

with sequence identity 526% and length 570% when compared with

query. The homologues were then realigned after curation.

2.3 Measures of overlap and clustering

To assess the recovery of known functional sites in proteins, we calculate

an overlap z-score zo between top-ET ranked positions and the ‘gold

standard’ functional site, based on the hypergeometric distribution. We

first calculate the mean m and the variance �2 of the hypergeometric

distribution

m ¼ n
M

N
and �2 ¼

nMðN�MÞðN� nÞ

N2ðN� nÞ
ð4Þ

where N is defined as the length of the query protein,M is the number of

residues that make up the functional site and n is the number of residues

that fall under a certain ET rank-coverage. We then calculate the hyper-

geometric z-score zo ¼
a�m
� , where a is the actual number of functional

site residues at a particular ET rank. Each ET rank can be associated with

a distinct z-score. To access performance at multiple ranks, we developed

the overlap measure hzoi, which is the average z-score over ET ranks that

fall within a particular coverage range,

hzoi ¼
1

K

XK
i

zðiÞo ð5Þ

Typically, we find that the most useful ET predictions are in the top

20%. zðiÞo is the overlap z-score corresponding to the residues within a

certain ET percentile rank i. The sum is over K unique evolutionary ranks

for residues that fall within the top 20% cutoff. The measure of clustering

is calculated in a similar fashion, hzci ¼
1
K

PK
i zðiÞc where zðiÞc are found

analytically and have already been discussed at length in Mihalek et al.,

(2003).

2.4 Sequence selection simulation

To test smoothing, 30000 ET analyses ran on randomly constructed

MSAs. Each alignment starts from a default alignment (described in

previous section) from which randomly sequences are removed, such

that the number of sequences removed was randomly chosen between
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25 and the total number of sequences in the starting alignment. The new

set of ET ranks leads to unique values of smoothing function xTLx and

average overlap z-score hzoi. The multiple ET analyses are binned based

on the value of the smoothing function xTLx. The average hzoi was then

found for the individual bins to evaluate the correlation.

2.5 Residue–residue evolutionary importance

To motivate our approach, we reasoned that although mutations operate

on individual residues, natural selection filters these mutations based on

how they perturb molecular interactions. Hence, neighboring residues, i,

j, should share evolutionary constraints and their importance ranks

should be closely related as observed by the clustering of top-ranked

residues within proteins (Madabushi et al., 2002) and their mirroring

across molecular interfaces (Raviscioni et al., 2005). If so, we should

focus measures of importance directly on molecular interactions rather

than on individual residues. By measuring the evolutionary importance of

the link between residues, �ði, jÞ, we could then infer the importance of i

from the average of �ði, jÞ over all its neighbors j. In essence, a residue’s

importance throughout evolution would be borne of its epistatic inter-

actions with neighboring residues. To implement this strategy and

compute the evolutionary importance of the link between two neighbor-

ing residues �ði, jÞ, we followed an ET strategy. Residues ranked highly

by ET have been shown to knock out (Ribes-Zamora et al., 2007) or swap

functions (Rodriguez et al., 2010), while control mutations to poorly

ranked residues were neutral. We can extend this same approach to a

pair of residues, where the residue pair i : j is more informative if its

sequence variations (among 20� 20¼ 400 possible unique states) corres-

pond to greater evolutionary tree divergences, i.e. those that are closer to

the tree root. The piET algorithm therefore applies the standard

rvET procedure to pairs of residues within the MSA, to measure these

residue–residue patterns in the context of the evolutionary tree. The evo-

lutionary importance of a structural neighbor pair i : j is denoted by

�ði, jÞ where,

�ði, jÞ ¼
XN�1
n¼1

1

n

Xn
g¼1

n
�
X400
ab¼1

fgabði, jÞ ln fgabði, jÞ
o

ð6Þ

where fgabði, jÞ is the frequency of the pair of an amino acid ab of a type

within group g of the sub-alignment in the n-th set of sub-alignments. The

number of possible nodes in the evolutionary tree is N – 1 where N is the

number of sequences in the alignment. The factor 1
n was adapted from a

previous study (Mihalek et al., 2004) to give weight to the individual sub-

alignments based on their location in the phylogenetic tree. The rvET

algorithm couples the phylogenetic tree to the pattern of variation of a

pair of residues, viewed as a single evolving unit (Supplementary Fig. S1).

Once the importance of every pair is available, the piET rank �ðiÞ of an

individual residue i is calculated by averaging �ði, jÞ over all its neighbors,

�ðiÞ ¼
1

Dði, iÞ

X
j

Aði, jÞ�ði, jÞ ð7Þ

As previously defined in Equation (2), Dði, iÞ is the number of residues

in contact with residue i (
P

k Aði, kÞ). This equation for �ðiÞ factors

shared evolution of the contact residues into the ET phylogenetic

framework.

2.6 Evolutionary trace annotation

To test the piET algorithm in a large-scale application, we substituted it

in place of rvET into the Evolutionary Trace Annotation (ETA) algo-

rithm and asked whether it improved ETA predictions. ETA is a suite of

programs for automated discovery of protein function based on their

structure. It identifies protein structures that may have identical

biochemical functions based on whether they share small structural

motifs composed of top-ranked ET residues (Erdin et al., 2010;

Kristensen et al., 2008; Ward et al., 2008). In brief, ETA defines structural

motifs by (i) mapping ET ranks onto the surface of a protein structure,

(ii) detecting clusters of important amino acids and (iii) selecting six

top-ranked amino acids from the cluster. The geometry of the alpha

carbon atoms of these six residues define a 3D template that is then

searched for, by geometric similarity, in the protein data bank (PDB)

(Berman et al., 2000). Specificity is enhanced by filtering matches based

on evolutionary and structural similarity and ensuring that protein

structures match each other reciprocally. These matches are used to

construct a network, as previously described (Venner et al., 2010), in

which nodes are protein structures and edges indicate functional

similarity, as detected by the ETA algorithm. We label this network

with known functional information and use a diffusion model to control

the propagation of those labels through the network, leading to predic-

tions of function for protein structures currently lacking function anno-

tations. If using piET instead of rvET causes ETA predictions to

improve, it suggests that piET is a more useful metric of evolutionary

importance.

2.7 Functional annotation test set

The function annotation tests included past query and target sets

(Ward et al., 2008; Wilkins et al., 2010). The query set included 1217

structural genomics enzymes annotated to the third or fourth level of

the Enzyme Commission (EC) classification. The target set is the subset

of the 2008PDB90 (Hobohm et al., 1992), which contains 17 234 proteins,

which contains 4387 enzymes with four-digit EC annotations. The com-

bination of the query and target sets resulted in a network of 17 952

proteins among which 5105 are annotated as enzymes. Each protein in

the test set was assigned a single enzymatic function.

2.8 Network construction and diffusion

Networks were built and predictions followed as previously described

(Venner et al., 2010). Briefly, an ETA template match was converted

into a real-valued (edge) weight by averaging the mean evolutionary

distance and the rmsd: w ¼ 1� ½ðrmsd� �rmsdÞ= �rmsd þ ðETScore� �

ETScoreÞ=�ETScore�. ETA outputs an rmsd and ETScore for each template

match. ETScore summarizes the average difference in evolutionary

importance (ET Rank) between matched residues and rmsd is the average

distance between the atoms in the structures of the matched templates.

Additionally, �rmsd is the average rmsd over all template matches, �rmsd is

the standard deviation of all rmsds. Likewise, �ETScore is the average

ETScore over all template matches and �ETScore is the standard deviation

of all ETScores.

Graph diffusion passes functional information between proteins that

share similar ETA templates (Venner et al., 2010). We can represent our

knowledge of protein enzymatic function as y, a vector of labels repre-

senting whether a protein i is associated with a particular EC number (yi).

Diffusion of the available information (in this case EC number) leads to a

new label, f. We can solve for f by minimizing the following:

ðf� yÞTðf� yÞ þ �fTLf ð8Þ

In this expression, the first term is the loss function and represents

the difference between initial and final labels. The second term is the

smoothness of the new label f in the context of the Laplacian matrix

L. The diffusion coefficient � balances the loss of the initial labels against

the smoothness. The previous equation has a closed form solution

f ¼ ðIþ �LÞ�1y ð9Þ

where I is the Identity matrix. The diffusion coefficient � is calculated as

previously shown (Venner et al., 2010).
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2.9 Network integration

To test for complementary functional information in rvET and piET, the

networks were merged into a single network (Tsuda et al., 2005). We

perform diffusion with multiple networks by solving for

f ¼ ðIþ
X
k

�kLkÞ
�1y ð10Þ

where Lk represents the Laplacian form of network k. �k is weighting

factor that represents the importance of each network in the combination.

We can find �k by minimizing yTðIþ c
P

k �kLkÞ
�1y. To simplify the

minimization problem, we set the additional restriction �1 þ �2 ¼ 1

(because in this case we have only two networks), and solved using the

brute force optimization procedure in the scientific python package

(SciPy: Jones, 2001). We are then able to solve for f for a particular y

vector that represents a specific enzymatic function (EC number). We

solve with a different y for each enzymatic function represented in the

network, thus associating every protein in the test set with every function.

To compare these values, we normalize to a z-score ððyi � ymeanÞ=ystdÞ.

For each protein, the function with the highest z-score is our predicted

enzymatic function for that protein, and we use the z-score as a

confidence measure in the prediction.

3 RESULTS

3.1 Smoothing the evolutionary importance rank

distribution improves functional site predictions

To test whether ET rank smoothness correlates with the quality

of functional site predictions, we applied the Laplacian operator

to the ET rank distributions on 74 diverse proteins bound to

various substrates, cofactors, DNA or proteins (see ‘Methods’

section). For each protein, a large number of alternative MSAs

was randomly generated from a default sequence alignment

(Fig. 1). This gave rise to multiple ET rank distributions, each

one with its unique smoothness, xTLx and overlap z-score

between top-ranked residues and the functional sites annotated

in the pdb files (details found in ‘Methods’ section). In most cases

(81%), the correlation was strong (Fig. 1c). Exceptions included

five proteins with inverse correlations (40.4) when the ET

clusters identified a functional site other than the one referenced

in the pdb file gold standard. For instance, in the rhodopsin

structure [PDBID 1f88], ET found the G-protein interaction

determinants instead of the retinal binding site noted in the

crystal structure (Berman et al., 2000). A specialized difference

ET analysis would be needed to identify that site, which is

specific to visual receptors (Madabushi et al., 2004). A few pro-

teins had small correlation because the functional site prediction

was robust and insensitive to the randomization procedure.

Nevertheless, averaging over all 74 proteins, including these

anomalies, the smoothest sequence selection improved the

smoothing function xTLx by 12.6%; it increased the traditional

clustering z-score hzci by 12.9%, and it raised the overlap

z-scores hzoi by 8.6%. In a second sequence simulation

experiment (Supplementary Material), we found that the

number of sequences had little influence on the correlations

and improvement in functional site prediction. These data

show a strong association between improved functional site an-

notations and smoother distributions of evolutionary importance

rankings.

Fig. 1. To establish that smoother ET ranks are a desirable feature, we

showed that smoothness correlated with the quality of functional site

prediction. MSAs of proteins with known functional sites were rando-

mized by selecting a random number of sequences and then analyzed with

the rvET algorithm. Every variation in the alignment leads to a new

distribution of ET ranks and, in turn, a unique value of the smoothness

within the structure (xTLx) and functional site overlap measure (hzoi).

The individual analyses were then binned and counted (black lines) based

on the value of xTLx where the average overlap measure (hzoi) for the

analyses in each bin was found (green triangle). Higher hzoi implies better

site prediction and lower xTLx implies a smoother distribution of ET

ranks over structure. In both cases there is a steady and strong improve-

ment in functional site overlap as smoothness increases, showed by the

average overlap z-score hzoi for the corresponding bins in the histogram

(green). (a) In the GTPase Rac structure [PDBID 1e96A, Human] the

default MSA (Blue) did not significantly recover the known binding site,

whereas the smoother ET ranks from sequence selection did. (b) By con-

trast, in the example the structure for FeS cluster assembly protein sufD

[PDBID 1vh4A, E.coli], the default MSA (blue) is already smoother than

most of the randomly generated alternatives. (c) The value of the smooth-

ing function xTLx for the random input sequences correlates with func-

tional site overlap. The average correlation over the 74 proteins was

�0.65
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3.2 New Algorithm identifies functional determinants

These results justified a search for an Evolutionary Trace algo-

rithm that is inherently smoother, dubbed piET, which was

benchmarked and compared with rvET on the same test set

used above Section 3.1. piET produced striking gains: 41%

better smoothing, evaluated with the quadratic form of the

Laplacian rose; 58% better clustering z-scores hzci among top-

ranked residues; and 23% better overlap z-score hzoi against

known sites. These functional site prediction improvements

were generally consistent across proteins, Figure 2. Hence, the

recovery of functional sites improves significantly with an algo-

rithm that measures the importance of residue interactions first,

and only deduces the importance of each residue second. This

strategy embodies the notion that smoothness is the byproduct of

shared evolutionary constraints among interacting residue neigh-

bors. Its success demonstrates that the phylogenomics of piET

brings correlated evolution to light, and that one of its hallmarks

is the structural smoothness of evolutionary importance.
To illustrate these gains in a specific example we next turned to

Hsp90, a eukaryotic chaperone critical for protein folding and

involved in cell cycle regulation, steroid hormone responsiveness

and signal transduction among many other processes. Its func-

tions depend on ATP hydrolysis and the crystallized structure

[PDBID 1am1] identifies the ATP–ADP binding sites. Although

rvET identified some residues proximal to this site involved in

ATP hydrolysis, piET identifies a much larger evolutionarily

important site in that region (Fig. 3a), and the overlap z-score

hzoi increased more than 2-fold (hzoi ¼ 1:91 to 4.39). In fact,

piET also outperforms the rvET optimized by choosing the

smoothest outcome after randomization of the sequence input.

In a second example, piET predicted the protein–protein inter-

face for the growth hormone and hormone receptor complex

[PDBID 1a22] better. Although the rvET had picked important

residues in this functional region of the growth hormone, the

evolutionary important site with piET is better resolved

(Fig. 3b) and statistically more significant (hzoi ¼ 0:625 to

2.51). In a third example, rvET found the dimer site of the

sufD structure [PDBID 1vh4] well, and no randomization of

the input sequences could improve this result. Yet, piET sharply
raises the statistical significance of the site (hzoi ¼ 6:97 to 8.95),

Supplementary Figure S3. These representative examples show
that piET is inherently smoother than rvET, and that this trans-

lates into better clustering among top-ranked ET residues and
better functional site identification.

3.3 Highlighting functional regions in LexA

To demonstrate functional site prediction, piET was next focused

on LexA, a well-studied protein that regulates the SOS response
to DNA damage in E.coli (Butala et al., 2009). On direct inter-

action with recombinase A (RecA), LexA dimers self-cleave their
DNA binding domain and thus lift transcriptional repression of

more than 40 genes, including some that mediate error-prone

DNA repair and subsequent escape from genotoxic stress
(Butala et al., 2009). The DNA binding and catalytic sites of

LexA have been identified but not its RecA interaction site.
Although recently rvET suggested a novel composite LexA bind-

ing site on RecA (Adikesavan et al., 2011), no such candidate site
is apparent on LexA.
First, piET improved the identification of the known DNA

binding site and active site of LexA. While rvET for the most
part does not find a cluster of top-ranked residues at the DNA

binding site, except for a few nearby residues (Fig. 4a, left panel),
piET fully recovers that site (Fig. 4a, right panel). The statistical

significance of these predictions (Supplementary Fig. S4) were
similar regardless of whether the reference LexA structures was

bound to DNA (as in PDBID 3jsp) or not (as in PDBID 1jhh).
Moreover, this improvement is not at the expense of loss of ET

signal elsewhere in the protein: piET identifies the catalytic active
site even better than rvET (Supplementary Fig. S4). Thus, pre-

viously characterized sites of LexA are better resolved by piET.
Next, we considered a small novel cluster of residues on the

LexA structure identified by piET, shown in Figure 4b. piET
ranked these residues as 14% more evolutionarily important

(rmsd is 3%) on average than rvET. They are in immediate con-
tact with each other and form a tight cluster, therefore fulfilling a

hallmark of a functional site not previously recognized.
Previously, a single E170V mutation at this site proved import-

ant for LexA self cleavage (Lin and Little, 1989). To extend this
observation, we performed additional mutations within the

piET-identified site neighboring E170. These mutations dis-
turbed LexA function in response to ultraviolet-induced DNA

damage, confirming that these residues form a previously unrec-
ognized LexA functional site (Fig. 4c). Together these data show

that piET pinpoints functional residues and active sites signifi-
cantly better than rvET, even in a complex multifunctional pro-

tein. In LexA, this leads to the discovery of a novel functional
site, possibly pointing to a binding site for RecA.

3.4 piET improves annotation of enzymatic function

To test whether piET also captures functional information on a
large scale, we constructed separate function prediction networks

with rvET–ETA and piET–ETA. These contained 17 952 pro-
teins (nodes), and 115784 and 114 542 ETA matches (edges) in

the piET and rvET networks, respectively. The diffusion model
(Venner et al., 2010) predicted enzymatic function and confi-

dence scores on a test set of 1070 structural genomics enzymes
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Fig. 2. Smoothing the distribution of ET ranks in the protein structure

improves the detection of functional residues. A set of 74 proteins was

tested for improvement in functional site detection with the piET

algorithm. The figure shows the consistent improvement in overlap

z-score hzoi for the individual proteins in the test set
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with existing annotations, based on 5105 annotated proteins in

the network. Whenever possible, these predictions were up to the

fourth level EC number, which describes not only the chemical

reaction but also its substrate. In this test, the piET algorithm

performed slightly better, with a small improvement (Supplemen-

tary Fig. S5) in area under the curve (AUCpiET ¼ 0:921
compared with AUCrvET ¼ 0:914).
To test whether these piET and rvET networks were redun-

dant or complementary, we merged them into a single network

(Tsuda et al., 2005). This method creates a weighted combination

based on the connectivity of the individual Laplacian matrices

and without need for training. The network mixture coefficients

were �rvET ¼ 0:37 and �piET ¼ 0:63. The first incorrect prediction
of this combined network occurs at 8.1% coverage, and it is

preceded by 86 correct ones (Supplementary Fig. S5). By con-

trast, the first incorrect prediction the rvET or piET networks

alone occurred at 30 and 31, respectively. This is of practical

importance, as the high confidence predictions are generally

the ones we would act on experimentally. The individual algo-

rithms mix in mistakes sooner, and by merging networks we can

reduce mistakes. At 100% coverage, the merged network method

was 4.3% more accurate and the area under the curve improved

to AUCrvETþpiET ¼ 0:945. Both the rvET and the piET

algorithms for detecting evolutionary importance focus the

ETA on different but complementary functional sites. ETA per-

formed best when the algorithms were integrated, showing that

each algorithm is providing relevant but unique functional

information.

4 DISCUSSION

This study adds in three significant ways to a long-term effort to

identify functional sites. First, we show that the spatial

distribution of evolutionary information (measured here by ET

rank) in a folded structure is smooth. This complements the

Fig. 3. Functional site prediction improves with piET algorithm. The piET algorithm (red) produces a ‘smoother’ distribution and captures the known

functional site better than both the rvET algorithm (blue) and the simulation (green). (a) The top 10% residues for Hsp90 chaperone [PDBID 1am1] are

marked on the protein surface for algorithms, rvET and piET. The piET algorithm scored more top-ranked residues close to the known protein–ligand

site with ADP as shown. (b) The protein–protein interface of hormone and receptor complex [PDBID 1a22] is better identified with the new algorithm.

The residues ranked in the top 20% for the respective algorithms, piET and rvET, are shown in prismatic color where the residues marked red are the

most evolutionarily important residuess

Fig. 4. The piET algorithm provides better biological understanding of

LexA. (a) The piET algorithm identifies the DNA binding site of LexA

better when compared with the rvET analysis (PDBID 3jsp). The residues

deemed to be in the top 30% are colored based on evolutionary import-

ance where red is considered the most important. (b) piET identifies a

novel cluster of residues. The rvET–piET difference scale is calculated by

taking the normalized difference of the rank percentiles. Residues are

marked red (piET) or blue (rvET) when the residue is significantly

more important to respective method. (c) Mutations at this new LexA

site disrupt DNA damage survival. *P50.05, **P50.01 and

***P50.001
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original notion of ET clusters (Lichtarge et al., 1996) with a

mathematically simple interpretation that lends itself to compu-

tation via the Laplacian operator of a graph. This discrete

Laplacian operator is fundamental to networks (Chung, 1997),

and here it enables optimization in sequence selection better than

the diverse measures of clustering used before (Wilkins et al.,

2010). These were entirely empirical and useful to suggest the

simplifying notion of smoothness. We show when we consider

the functional linkage between residues, we can better interpret

sequence information.
The second improvement builds on this notion of smoothness

to develop an algorithm that focuses on a residue’s interactions

with neighbors. The method first scores the importance of these

interactions and then averages over the neighbor interactions to

give the total importance of each residue. This is consistent with

prior suggestions (Gutteridge et al., 2003; Raviscioni et al., 2005)

that natural selection operates based less on the intrinsic charac-

ter of an amino acid, than on the nature of its couplings to other

residues, here primarily those in its immediate surrounding.

Previous studies have noted improvement in predictions when

they average evolutionary information for residues over

sequence (Capra and Singh, 2007; Pei and Grishin, 2001) and

structure (Panchenko et al., 2004; Teppa et al., 2012). We add to

this work by quantifying the shared evolutionary pattern be-

tween residues near in structure. These interactions are the

essence of the residue’s function. Though the method is currently

limited to structural information, we can use the constantly im-

proving homology-modeling algorithms (Roy et al., 2010) or

databases of pre-computed homology models (Bordoli and

Schwede, 2012).

Third, we show how these results follow logically from epistatic

interaction among residues. Other methods focused on pairwise

interactions via covariation (Pazos and Valencia, 2008), thermo-

dynamic (Maksay, 2011) or energetic coupling (de la Lande et al.,

2010). Networks of such correlations often lead to clusters of

pathways although their interpretation is not straightforward

(Chi et al., 2008). By contrast, clusters of ET residues lead to

functional sites shown independently to be highly significant com-

pared with other methods [see Supplementary Materials in

Rausell et al. 2010, and extensively tested experimentally in a

large variety of proteins (Lichtarge and Wilkins, 2010)]. These

validations included mapping and then recoding of allosteric

determinants of both interprotein and intraprotein signaling path-

ways (Rodriguez et al., 2010).
In summary, this work finds and exploits the fact that epistatic

forces mold evolution and, as a result, leads to the smooth dis-

tribution of evolutionary importance throughout protein struc-

tures. This smoothness stems from the functional linkage of

residues typically nearby in conformation, a hallmark of epista-

sis. This basic property leads to new algorithms for computing

the evolutionary importance of (a) residue–residue interaction

among neighbors, and (b) individual residues. In turn, this sub-

stantially improves functional site analysis and function predic-

tion in test sets while also verified experimentally by predicting a

novel site in LexA. This should prove useful in guiding protein

engineering and mutations to the most relevant parts of a

protein. A server performing piET calculations is available at

our site: http://mammoth.bcm.tmc.edu/uet.
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